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ABSTRACT 

Oster, Scott M. Ph.D., Purdue University, May, 2012.  Chronic Ethanol Drinking 
by Alcohol-Preferring Rats Increases the Sensitivity of the Mesolimbic Dopamine 
System to the Reinforcing and Stimulating Effects of Cocaine.  Major Professor: 
James M. Murphy. 
 
 
 

Alcohol and cocaine are commonly co-abused drugs, and those meeting 

criteria for both cocaine and alcohol use disorders experience more severe 

behavioral and health consequences than those with a single disorder. Chronic 

alcohol (ethanol) drinking increased the reinforcing and dopamine (DA) neuronal 

stimulating effects of ethanol within mesolimbic regions of the central nervous 

system (CNS) of alcohol-preferring (P) rats. The objectives of the current study 

were to determine if chronic continuous ethanol drinking produced: (1) alterations 

in the sensitivity of the nucleus accumbens shell (AcbSh) to the reinforcing 

effects of cocaine, (2) changes in the magnitude and time course of the local 

stimulating effects of cocaine on posterior ventral tegmental area (pVTA) DA 

neurons, and (3) a persistence of alterations in the stimulating effects of cocaine 

after a period of protracted abstinence. 

Female P rats received continuous, free-choice access to water and 15% 

v/v ethanol for at least 10 wk (continuous ethanol-drinking; CE) or access to 

water alone (ethanol-naïve; N). A third group of rats received the same period of 

ethanol access followed by 30 d of protracted abstinence from ethanol (ethanol-

abstinent; Ab). CE and Ab rats consumed, on average, 6-7 g/kg/d of ethanol. 

Animals with a single cannula aimed at the AcbSh responded for injections of 

cocaine into the AcbSh during four initial operant sessions. Cocaine was not 

present in the self-infused solution for the subsequent three sessions, and 
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cocaine access was restored during one final session. Animals with dual 

ipsilateral cannulae aimed at the AcbSh and the pVTA were injected with pulsed 

microinfusions of cocaine into the pVTA while DA content was collected for 

analysis through a microdialysis probe inserted into the AcbSh. 

During the initial four sessions, neither CE nor N rats self-infused artificial 

cerebrospinal fluid (aCSF) or 0.1 mM cocaine into the AcbSh. CE, but not N, rats 

self-administered 0.5 mM cocaine into the AcbSh, whereas both groups self-

infused concentrations of 1.0, 2.0, 4.0, or 8.0 mM cocaine. When cocaine access 

was restored in Session 8, CE rats responded more on the active lever and 

obtained more infusions of 0.5, 1.0, 2.0, or 4.0 mM cocaine compared to N rats. 

Microinjection of aCSF into the pVTA did not alter AcbSh DA levels in N, CE, or 

Ab rats. Microinjections of 0.25 mM cocaine into the pVTA did not significantly 

alter AcbSh DA levels in N animals, moderately increased DA levels in CE rats, 

and greatly increased DA levels in Ab rats. Microinjections of 0.5 mM cocaine 

into the pVTA modestly increased AcbSh DA levels in N animals, robustly 

increased DA levels in CE rats, and did not significantly alter DA levels in Ab rats. 

Microinjections of 1.0 or 2.0 mM cocaine into the pVTA modestly increased 

AcbSh DA levels in N animals but decreased DA levels in CE and Ab rats. 

Overall, long-term continuous ethanol drinking by P rats enhanced both 

the reinforcing effects of cocaine within the AcbSh and the stimulatory and 

inhibitory effects of cocaine on pVTA DA neurons. Alterations in the stimulatory 

and inhibitory effects of cocaine on pVTA DA neurons were not only enduring, 

but also enhanced, following a period of protracted abstinence from ethanol 

exposure. Translationally, prevention of chronic and excessive alcohol intake in 

populations with a genetic risk for substance abuse may reduce the likelihood of 

subsequent cocaine use. 
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1. INTRODUCTION 

 Addiction and Polydrug Use 

 

A definitive feature of substance abuse is an individual’s transition from a 

controlled use of drugs or alcohol to a state where compulsive substance use 

involves a ‘loss of control’ (DSM-IV, American Psychiatric Association, 1994). 

Along these lines, addiction is generally expressed as maladaptive changes in 

spontaneous behavior and the behavioral response to a drug after continued 

use, resulting from drug-induced adaptations in the central nervous system 

(CNS; Kalivas, 2009). More than 50% of Americans over the age of 12 (120 

million) are current alcohol users, and nearly 8% of those (18 million) met criteria 

for substance abuse or dependence (Substance Abuse and Mental Health 

Services Administration, 2008). Moreover, nearly 16% of adults in the United 

States (29 million) will participate in non-medical or illicit drug use in their lifetime, 

with 3% (5.4 million) meeting criteria for drug dependence at some point (Grant 

and Dawson, 1998; Grant et al., 2004). Of this illicit drug use, cocaine continues 

to be a significant problem. In 2005, 2.4 million and 1.5 million Americans were 

classified as users and abusers, respectively (Substance Abuse and Mental 

Health Services Administration, 2005). Cocaine use accounted for 29% of all 

drug-related emergency department visits in 2000, more than any other illicit 

drug. Substance abuse and dependence were associated with an increased risk 

of physical and mental illness, disability, lost work productivity, financial 

problems, committing and suffering violence, accidents, and death (Rehm et al., 

2006). Estimates predict that 23% of alcohol users and 21% of cocaine users will 

become dependent at some time in their life (Lopez-Quintero et al., 2011b).  
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Those with a diagnosis of an alcohol use disorder (abuse or dependence) 

were seven times more likely to develop another drug use disorder as those 

without a diagnosis of alcohol abuse or dependence (Compton et al., 2007). 

Subjects with the diagnosis of alcohol dependence were more likely to become 

cocaine misusers and experience more adverse consequences of cocaine use, 

and alcohol abuse was a common problem among cocaine dependent patients 

(Heil et al., 2001; Staines et al., 2001). Those with a previous diagnosis of 

cocaine dependence were less likely to remit from alcohol dependence (Lopez-

Quintero et al., 2011a). Moreover, a significant proportion of those seeking 

treatment for either alcohol or cocaine abuse concurrently used both drugs. For 

example, the majority of cocaine users reported co-administering alcohol during 

cocaine binges (Brookoff et al., 1996; Carroll et al., 1993; Grant and Harford, 

1990; Magura and Rosenblum, 2000). Estimates suggest that 20-63% of alcohol-

dependent patients qualified as cocaine-dependent (Miller and Giannini, 1991), 

while 62-85% of cocaine-dependent individuals were dependent on alcohol 

(Regier et al., 1990; Rounsaville et al., 1991). Individuals with comorbid drug and 

alcohol use disorders met a higher number of criteria for each disorder, and thus 

displayed more severe dependence-related problems than those with a single 

disorder. Those who co-abused alcohol and other drugs were also more likely to 

be diagnosed with psychiatric disorders, attempt suicide, and suffer health 

problems (Arnaout and Petrakis, 2008). Patients who were both cocaine- and 

alcohol-dependent displayed more psychosocial problems compared to patients 

with only alcohol dependence or cocaine dependence (Brady et al., 1995; Carroll 

et al., 1993; Walsh et al., 1991). Furthermore, chronic abuse of either cocaine or 

alcohol left multiple metabolic and structural brain defects after protracted 

abstinence, and concomitant dependence on both substances aggravated white-

matter structural defects in frontal cortical brain regions (O’Neill et al., 2001).  

In studies of drug use initiation order, alcohol and tobacco are most 

commonly used first, followed by marijuana, and finally other illicit drugs 

(Ellickson et al., 1992; Fergusson et al., 2006). Kandel and Faust (1975) initially 
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proposed this sequence as the ‘gateway’ hypothesis, suggesting use at each 

stage increases the number of users progressing to the next stage. While 

longitudinal studies support a causal effect of alcohol and tobacco use on 

subsequent illicit drug use (Van Gundy and Rebellon, 2006), one must account 

for the potential existence of one or more unmeasured common causes (Morral 

et al., 2002). Accordingly, background prevalence at least partially affected 

substance use progression patterns when patterns from multiple countries 

around the world were analyzed (Degenhardt et al., 2010). Interestingly, the 

initiation of alcohol and tobacco use was more significantly associated with the 

subsequent onset of illicit drug use in countries with higher rates of 

alcohol/tobacco use (e.g. the United States) compared to countries with lower 

use rates (e.g. Nigeria and South Africa). While early onset drug use often 

predicted an increased risk of transition to dependence (Behrendt et al., 2009; 

Dawson et al., 2008; Grant et al., 2001), the risk of transitioning to dependence 

may depend as much upon the existence of a concurrent psychiatric or other 

substance use disorder (Behrendt et al., 2009; Degenhardt et al., 2009; Lopez-

Quintero et al., 2011b). Associative learning processes, rapid neuroadaptations, 

and drug interactions potentially mediated the enhanced speed of transition from 

cocaine use to dependence resulting from a previous history of a distinct 

substance use disorder, via enhanced drug effects and/or decreased adverse 

effects (Bradberry et al., 1999; Kapusta et al., 2007; Leri et al., 2003; Schlaepfer 

et al., 2008).  

Genetic factors played a significant role in the pattern of comorbidity of 

common psychiatric and substance use disorders when examined in family, twin, 

and genome-wide studies (Burmeister et al., 2008; Kendler et al., 2003; Li and 

Burmeister, 2009). Dependence on multiple substances had a high genetic 

liability, and polysubstance abuse was associated with a number of alleles on 

several genes (Agrawal et al., 2008; Schlaepfer et al., 2008). Moreover, while 

both genetic and environmental factors played a role in twin concordance of 

cocaine use, genetic factors more significantly impacted the concordance of 
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abuse and dependence (Kendler and Prescott, 1998; Kendler et al., 2000). For 

example, 59% of those diagnosed with an alcohol use disorder and 77% of those 

diagnosed with a cocaine use disorder had family histories with substance use 

disorders (Lopez-Quintero et al., 2011b). Furthermore, the rate of cocaine-

dependence was nearly three times higher in individuals with a genetic 

predisposition for alcoholism compared to the general population (Nurnberger et 

al., 2004). The initiation of alcohol use predicts the subsequent use of illicit drugs, 

but questions regarding causality remain when examining epidemiological data. 

Experiments using animal models of drug use can be used to examine the 

sequence of drug initiation and elucidate putative neurobiological substrates for 

adaptive processes contributing to the observed changes in behavior. 

 The Role of Mesocorticolimbic Dopamine 

 

Compulsive and maladaptive drug-taking and drug-seeking behaviors are 

associated with neuroplastic changes within the mesocorticolimbic dopamine 

(DA) pathway and its afferent and efferent connections (Everitt and Robbins, 

2005; Koob and Volkow, 2010; Nestler, 2005; Wise, 2004). The 

mesocorticolimbic (MCL) system consists of DA cell bodies in the ventral 

tegmental area (VTA), sending efferent projections to a number of cortical and 

basal ‘limbic’ forebrain structures, including the nucleus accumbens (Acb), 

ventral pallidum (VP), amygdala, olfactory tubercle (OT), septum, bed nucleus of 

the stria terminalis (BNST), hypothalamus, thalamus, habenula, hippocampus, 

prefrontal cortex (PFC), orbitofrontal cortex, and anterior cingulate (Hasue and 

Shammah-Lagnado, 2002; Nauta et al., 1978; Oades and Halliday, 1987; 

Phillipson, 1979a; Sesack and Grace; 2010; Swanson, 1982). VTA DA neurons 

were implicated in a number of functions, including: the facilitation of approach 

behaviors; the mediation of positive reinforcement; error prediction of 

reinforcement; and the mediation of associative learning processes, such as 

selection, initiation, and invigoration of learned behaviors (Baldo and Kelley, 
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2007; Fields et al., 2007; Grace et al., 2007; Horvitz, 2000; Ikemoto, 2007; Kelley 

and Berridge, 2002; Redgrave et al., 2008; Robbins and Everitt, 1996; Salamone 

et al., 2003; Schultz, 2007; Wise, 2004). While these functions are conceptually 

distinct, they are difficult to separate experimentally (Fields et al., 2007; Ikemoto 

and Panksepp, 1999). Moreover, firing patterns of VTA DA neurons and both 

increases and decreases in terminal DA levels were associated with stress, 

novelty, negative reinforcement, and aversive/noxious stimuli (Brischoux et al., 

2009; Carlezon and Thomas, 2009; Liu et al., 2008; Ungless et al., 2010).  

The MCL system facilitates complex hierarchical control of adaptive 

ingestive behavior by integrating temporally and spatially coincident events into 

associations, allowing for adaptive and goal-directed behaviors and ultimately, 

survival (Kelley, 2004). Briefly, the constructs of ‘reward’ and ‘reinforcement’ are 

related, but distinct. Reward can be conceptualized as an unconditioned stimulus 

eliciting an appetitive approach response from an organism (Fields et al., 2007; 

Ikemoto and Panksepp, 1999; Young, 1959), distinct from the concept of reward 

as a positive hedonic experience (i.e. euphoria or liking). Reinforcement refers to 

the strengthening of associations between an action, a stimulus contingent to an 

outcome, and an outcome contingent to an action (Skinner, 1938). A number of 

novel stimuli initially unpaired with behavioral outcomes but possessing salience 

due to high intensity and abrupt onset affected the activity of VTA DA neurons 

(Schultz et al., 1998). Unexpected natural rewards and conditioned cues 

predicting reinforcement, both motivationally relevant events, induced firing of 

VTA DA neurons (McClure et al., 2003; Phillips et al., 2003). Thus, DA release in 

terminal areas, such as the Acb, was potentially involved with the response to the 

delivery of a reinforcer and enabled motivated actions toward future 

reinforcement (Wise, 2004). As such, MCL DA potentially functions primarily to 

guide instrumental behavior and is less associated with the consummatory act 

(Robinson and Berridge, 1993; Salamone et al., 2003). Theoretically, DA 

released in terminal areas acts: to alert the organism to the appearance of a 

novel salient stimuli and promote learning through neuroplasticity, and to alert the 
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organism of a future presentation of a familiar motivationally relevant event 

based on learned associations with stimuli predicting the event (Keitz et al., 

2003; McClure et al., 2003). Interestingly, different subsets of neurons within the 

Acb may respond preferentially to different motivationally relevant stimuli, such 

as water versus cocaine (Carelli and Wondolowski, 2003).  

On the other hand, a number of similarities between drug and non-drug 

(e.g. food, sex, exercise, gambling) reinforcers exist with regards to both 

behavioral and neurobiological responses (Corwin and Hajnal, 2005; Levine et 

al., 2003; Pelchat et al., 2004; Potenza, 2008; Volkow and Wise, 2005). For 

example, acute exposure either drugs of abuse (e.g. ethanol, cocaine, nicotine) 

or sucrose resulted in increased DA levels within terminal regions of the MCL 

system (Carr, 2002; Di Chiara and Imperato, 1988; Hajnal et al., 2004; Rada et 

al., 2005). Furthermore, hunger was not required to produce food or sucrose 

craving (Grimm et al., 2007; Pelchat et al., 2004), just as withdrawal is not 

necessary for drug craving (Shaham et al., 2003). Interactive effects between 

drug and non-drug reinforcement processes potentially resulted from common 

neural substrates. For example, the process of oral ethanol consumption 

activated reinforcement circuitry through both direct mechanisms and indirectly 

via the stimulation of neural substrates associated with the taste of sugar (Lemon 

et al., 2004). In addition, excessive seeking and consumption of food and 

sucrose followed a similar progression of compulsive and maladaptive behaviors 

associated with drug addiction (Ahmed, 2005; Avena et al., 2008; Carr, 2007; 

Koob and Volkow, 2010; Wise, 2004). Sucrose and drug reinforcers displayed 

both cross-sensitization (Avena and Hoebel, 2003a,b; Colantuoni et al., 2001; 

Gosnell, 2005) and cross-tolerance (D’Anci et al., 1996). Moreover, sequential 

exposure to drug and non-drug reinforcers produced interactive effects with 

regard to intake escalation (Avena et al., 2008; Colantuoni et al., 2002), 

withdrawal effects (Colantuoni et al., 2002), and relapse (Shalev et al., 2006). 

Drugs of abuse produced a functional reorganization of the MCL system in 

the form of robust and persistent neuronal plasticity, leading to the formation of 



www.manaraa.com

 

 

7 

maladaptive behaviors and ultimately compulsive drug seeking (Kalivas and 

Volkow, 2005; Self and Nestler, 1998; Steketee and Kalivas, 2011; Wolf et al., 

2004; Zweifel et al., 2008). While drugs of abuse induced functional alterations 

throughout the MCL and its afferent and efferent connections, the 

mesoaccumbens division of the MCL is of particular interest in the initiation and 

early formation of maladaptive neuroplasticity. The mesoaccumbens (or meso-

ventrostriatal) circuit can be divided into two functionally distinct, but interrelated 

systems (Ikemoto, 2007). These systems are: the meso-ventromedial (MVM) 

circuit from the caudomedial (posterior) VTA (pVTA) to the medial Acb shell 

(AcbSh) and medial OT, and the meso-ventrolateral (MVL) circuit from the 

rostrolateral (anterior) VTA (aVTA) to the lateral AcbSh, Acb core (AcbC), and 

lateral OT. For future reference, AcbSh will refer to the medial AcbSh, as nearly 

all experiments evaluating the function of the AcbSh have specifically targeted 

medial regions. Research into the mechanisms of drugs of abuse within the MVM 

is of particular interest, as both the pVTA and AcbSh are critical substrates for 

the acute reinforcing effects of drugs and for the initiation of associative learning 

(Gonzales et al., 2004; Ikemoto, 2007; Ikemoto and Panksepp, 1999; Kelley, 

2004; Koob and Volkow, 2010; Koob et al., 1998; McBride et al., 1999; Nestler, 

2005; Wise, 2004). The dynamic role of MVM dopaminergic functioning in 

reinforcement and learning processes has frequently been assessed using a 

number of well established behavioral and neurochemical assays. 

 

 Behavioral and Neurobiological Assays 

 

In vivo microdialysis, voltammetry, and electrophysiological measurement 

(for review, see Marinelli et al., 2006; Salamone et al., 1996, Torregrossa and 

Kalivas, 2008), as well as intracranial self-administration (ICSA) and intracranial 

place conditioning (for review, see Ikemoto, 2007, 2010; McBride et al., 1999; 

Sanchis-Segura and Spanagel, 2006; Tzschentke, 1998, 2007; Wise and 
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Hoffman, 1992), are examples of assays implemented in the characterization of 

specific brain sites involved in reinforcement and learning processes. The 

investigation of the neurocircuitry and mechanisms associated with drug 

reinforcement using both neurochemical (e.g. in vivo microdialysis) and 

behavioral (e.g. ICSA) techniques provide convergent evidence associating 

functional alterations in neurotransmitter output with changes in behavioral output 

(Torregrossa and Kalivas, 2008). 

The ICSA technique is a valuable method for the identification and 

classification of discrete brain regions responsible for the initiation and 

maintenance of response-contingent delivery of a chemical reinforcer (Goeders 

and Smith, 1987). ICSA procedures have reliably identified brain sites involved in 

mediating the reinforcing effects of drugs of abuse and have examined brain 

sites, neuronal pathways, and receptor systems involved in mediating operant 

reinforcement behavior (for review, see Goeders and Smith, 1987; Ikemoto, 

2007, 2010; Wise, 2002; McBride et al., 1999). In some cases, a chemical 

agent's neural ‘trigger-zone’ contains cell bodies, whereas in other cases it is 

within a terminal region. Drugs of abuse can act within the brain in a reinforcing 

manner by mimicking, enhancing, or blocking the actions of endogenous 

transmitters in the brain within particular anatomical substrates of the MCL DA 

system (Wise and Hoffman, 1992) and sites sending afferent innervation to MCL 

sites (Ikemoto, 2010). Using the ICSA paradigm, animals receive the delivery of 

nanoliter volumes of a drug solution into a discrete brain region a response-

contingent manner. The ICSA procedure has been used to elucidate specific 

central nervous system sites, neuronal systems, and receptor types involved in 

reinforcement and the interactions between these systems (McBride et al., 1999). 

By using intracranial drug delivery, the ICSA technique presents fewer 

anatomical and pharmacological limitations compared to the intracranial electrical 

self-stimulation and intravenous self-administration (IVSA) methods. 

The microinjection-microdialysis procedure has identified specific brain 

sites involved in the actions of drugs and other pharmacological agents and the 
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corresponding neurotransmitter responses in associated brain sites (Ding et al., 

2009a,b; Guan and McBride, 1989; Ikemoto et al., 1997b). For example, 

microinjection-microdialysis techniques have explored the specific ‘downstream 

response’ of ICSA-like pulsed drug microinfusions to the pVTA (which contain 

MVM DA neurons) on extracellular DA levels in terminal regions such as the 

AcbSh. Drug administration is contingent upon operant responding in the ICSA 

paradigm, but not during microinjection-microdialysis. Along these lines, certain 

neurobiological assays captured the effects of drug contingency on the 

expression of functional alterations to the MCL system (Chen et al., 2008), while 

other assays did not find significant effects of contingency (Geisler et al., 2008).  

The microinjection-microdialysis paradigm examines the initial (non-

contingent) pharmacological effects presumably observed during the initiation of 

response-contingent behaviors in parallel ICSA experiments. Nevertheless, 

changes in Acb DA levels are extremely similar after either operant oral ethanol 

consumption (Melendez et al., 2002; Weiss et al., 1996) or pVTA microinjection 

of ethanol (Ding et al., 2009a). Moreover, microinjections of the ethanol 

metabolites acetaldehyde or salsolinol, or cocaine into the pVTA, but not the 

aVTA, increased extracellular DA levels within the Acb (current results; Deehan 

et al., 2007; Rodd et al., 2006b). Accordingly, rats will self-administer these 

reinforcing compounds (cocaine, ethanol, acetaldehyde, salsolinol) into the 

pVTA, but not aVTA (Rodd et al., 2004a,b, 2005a,b,c,d, 2008; Rodd-Henricks et 

al., 2000a, 2002b, 2003). Of note, in vivo microdialysis is a measurement tool 

best utilized to assess ‘tonic’, opposed to ‘phasic’, dopaminergic functioning 

(Grace, 2000; Grace et al., 2007). In this regard, observed changes in 

extracellular DA were correlated with the number of spontaneously active VTA 

DA neurons, but not with the average firing frequency or burst activity of VTA DA 

neurons (Floresco et al., 2003; Marinelli et al., 2006). 
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 Mesoaccumbens Circuit: Connectivity and Heterogeneity 

 Ventral Tegmental Area: Connectivity 

 

The VTA consists of a number of adjacent heterogeneous groups of cells 

positioned medially and ventrally within the midbrain (Tsai, 1925a,b; Dahlstrom 

and Fuxe, 1964). The VTA contains the majority of what is historically known as 

the A10 DA cell bodies, although there is no clear boundary between A9 nigral 

and A10 tegmental neurons (Dahlstrom and Fuxe, 1964; Lindvall and Bjorklund, 

1978; Oades and Halliday, 1987). The VTA contains mostly DA neurons (around 

65%; Swanson, 1982; Nair-Roberts et al., 2008), with gamma-aminobutyric acid 

(GABA; Swanson, 1982; Steffensen et al., 1998) and glutamate (Nair-Roberts et 

al., 2008) neurons present to a lesser degree (around 30-35% and 3%, 

respectively). These DA neurons send significant projections to limbic and 

cortical areas, while less prominently innervating striatal, diencephalic, and 

rhombencephalic areas (Oades and Halliday, 1987).  

The VTA receives abundant afferent projections, forming a continuous 

band of neurons not organized into discrete nuclei, from a number of regions 

(predominantly ‘limbic’ structures) including the: PFC, lateral septum, medial 

septum-diagonal band complex, Acb, VP, BNST, amygdala, medial and lateral 

preoptic area, lateral hypothalamus, lateral habenula, dorsal raphe, rostromedial 

tegmental nucleus, pedunculopontine tegmental nucleus, laterodorsal 

tegmentum, periaqueductal gray, and mesencephalic and pontine reticular 

formation (Carter and Fibiger, 1977; Dahlstrom and Fuxe, 1964; Geisler and 

Zahm, 2005; Lindvall and Bjorklund, 1978; Mena-Segovia et al., 2008; Oades 

and Halliday, 1987; Phillipson, 1979b). These afferent inputs provide excitatory, 

inhibitory, and modulatory innervation to the DA, GABA, and glutamate neurons 

within the VTA via the release of a number of neurotransmitters and 

neuromodulators, including: acetylcholine (ACh), GABA, glutamate, 

norepinephrine, serotonin, endogenous opioids, corticotrophin releasing factor 
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(CRF), and orexin (ORX). The VTA sends efferent projections from DA and 

GABA neurons, with minimal branching and considerable overlap, innervating 

cortical regions (e.g. prefrontal, insular, medial frontal, entorhinal, cingulate, 

anterior suprarhinal), Acb, lateral septum, BNST, amygdala, OT, dorsal 

hippocampus, lateral habenula, thalamus, reticular formation, central gray, locus 

coeruleus, median and dorsal raphe nuclei, and the anteromedial striatum 

(Beckstead et al., 1979; Carter and Fibiger, 1977; Fallon and Moore, 1978; 

Ikemoto, 2007; Nauta et al., 1978; Oades and Halliday, 1987; Swanson, 1982).  

Anatomically, the VTA is a heterogeneous structure composed of five 

identified nuclei: paranigral, parabrachial, interfascicular, rostral linear, and 

caudal linear (for review, see Oades and Halliday, 1987). VTA cytoarchitecture 

includes morphologically distinct dopaminergic cells exhibiting specialized axonal 

projections (Halliday and Tork, 1984; Phillipson, 1979a) and topographic afferent 

and efferent projections (Brog et al., 1993; Fallon and Moore, 1978; Fallon, 1988; 

Hasue and Shammah-Lagnado, 2002; Kalen et al., 1988; Tan et al., 1995). For 

instance, the raphe nuclei send serotonin projections primarily innervating the 

interfascicular and paranigral of the VTA, with less innervation of the dorsorostral 

VTA (Herve et al., 1987). Moreover, reciprocal projections to the dorsal raphe 

nucleus originate almost exclusively from the caudal VTA (Kalen et al., 1988). 

Moreover, the paranigral region contains a greater density of serotonergic 

varicosities and sends projections primarily to the AcbSh, whereas the lateral PB 

region has less serotonergic innervation and projects predominantly to the AcbC 

(Van Bockstaele et al., 1994). While the majority of DA neurons originate from 

within the pVTA, most GABA and glutamate neurons are located in the aVTA 

(German and Manaye, 1993; Ikemoto, 2007; Nair-Roberts et al., 2008; Olson and 

Nestler, 2007; Swanson, 1982; Yamaguchi et al., 2007). ACh neurons 

preferentially innervate mesoaccumbens neurons in the VTA (Omelchenko and 

Sesack, 2006), and activation of nicotinic ACh receptors within the pVTA, but not 

aVTA, activated DA neurons (Zhao-Shea et al., 2011). ORX neurons synapse on 

DA neurons projecting to the PFC and AcbSh, but not the AcbC (Vittoz et al., 
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2008). Medial portions of the parabrachial project to the AcbSh and medial OT, 

while the lateral parabrachial projects to the AcbC, lateral AcbSh, and lateral OT 

(Ikemoto, 2007). 

 Nucleus Accumbens: Connectivity 

 

The Acb is part of the ventral striatal complex (Zahm, 2000; Zahm and 

Brog, 1992) receiving extensive excitatory afferents from the cortex and thalamus 

(Sesack and Grace, 2010). The AcbSh and AcbC share striatal characteristics, 

as approximately 90% of the cells are medium spiny projection GABA neurons 

(MSN; Meredith, 1999). The remaining cells are primarily ACh interneurons, with 

an extensive network of axons and terminals innervating MSNs within both the 

AcbSh and AcbC (Meredith and Chang, 1994; Kawaguchi et al., 1995). The Acb 

receives afferent innervation from the VTA, VP, substantia nigra (SN) pars 

compacta, dorsal raphe, locus coeruleus, periaqueductal gray, pedunculopontine 

tegmental nucleus, lateral hypothalamus, cortex (PFC, limbic, orbital, and 

insular), subiculum of the hippocampus, and amygdala (Kelley et al., 1982; 

Reynolds and Zahm, 2005; Van Bockstaele and Pickel, 1995; Voorn et al., 1986). 

These afferents are excitatory, inhibitory, and modulatory through the release of 

GABA, glutamate, norepinephrine, serotonin, and ORX (Sesack and Grace, 

2010). The Acb sends efferent projections to the hypothalamus, VP, VTA, SN, 

and other brainstem areas (Haber et al., 1990; Heimer et al., 1991; Zahm, 2000). 

The AcbSh and AcbC differ in their afferent and efferent projection patterns, 

neurochemistry, cellular morphology, and overall function (Heimer et al., 1991; 

Meredith et al., 1992, 1996; Brog et al., 1993; Zahm and Heimer, 1993).  

Both dopaminergic and non-dopaminergic innervation of the Acb appears 

to display a similar medial-lateral topography (Ikemoto, 2007; Sesack and Grace, 

2010). For example, ventral portions of the subiculum and limbic and orbital 

cortices innervate the AcbSh, whereas the dorsal aspects of these regions 

project to the AcbC (Brog et al., 1993). In addition, ORX neurons from the 
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hypothalamus innervate the AcbSh, but not the AcbC. DA afferents from the VTA 

to the Acb synapse onto GABA MSNs (Pickel and Chan, 1990; Pickel et al., 

1988). These MSNs also receive excitatory synapses from cortical axon 

terminals often organized in a ‘triad’ arrangement, allowing DA to display 

inhibitory or modulatory synapses (Sesack and Pickel, 1990, 1992). DA axons in 

the Acb do not appear to selectively modulate particular glutamate afferents, but 

potentially act more commonly through volume transmission (Sesack and Grace, 

2010). Supporting this idea are the findings that DA receptors in the Acb are 

primarily extrasynaptic (Sesack, 2009), DA communicates through both synaptic 

and volume transmission (Moss and Bolam, 2008) and modulates the general 

excitability of glutamate neurons (Nicola et al., 2000; Surmeier et al., 2007). 

The AcbSh innervates the ventromedial VP, VTA, SN pars compacta, 

lateral hypothalamus, lateral preoptic area, periaqueductal gray, and 

pedunculopontine tegmental nucleus; while the AcbC innervates the dorsomedial 

VP, SN zona reticulata, and entopeduncular nucleus (Haber et al., 1990; Heimer 

et al., 1991). The dorsolateral VP then sends projections to the SN reticulata and 

subthalamic nucleus, while the ventromedial VP innervates the VTA and basal 

forebrain. This allows for not only an indirect and direct feedback loop from the 

forebrain to the midbrain, but also a spiral loop moving from ventromedial to 

dorsolateral striatal areas (Nauta et al., 1978; Zahm and Heimer, 1993). This 

spiral loop forms a pVTA-AcbSh-aVTA-AcbC-SNreticulata-striatum pattern of 

connectivity allowing ‘limbic’ structures to affect transmission in more motor-

related structures of the basal forebrain (Sesack and Grace, 2010). This 

corresponds to Mogenson’s conceptualization of the Acb as an interface where 

motivations from limbic regions interact with motor circuitry to drive motivated 

behavior (Mogenson et al., 1980). 

Overall, firing of DA neurons in the VTA produces the release of DA from 

terminals in the Acb (Sombers et al., 2009) and from the soma and dendrites 

within the VTA (Beart et al., 1979; Kalivas and Duffy, 1991) in an impulse-

dependent manner (Beckstead et al., 2007; Kita et al., 2009). DA released within 
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the Acb activates DA-receptor-1-like (D1 and D5) and DA-receptor-2-like (D2, D3, 

and D4) receptors. These receptors will be referred to from this point as simply D1 

and D2 unless otherwise noted. Activation of D1 receptors increase adenylyl 

cyclase (AC) activity via stimulatory G-proteins to increase cyclic adenosine 

monophosphate (cAMP) levels, while the D2 receptor is negative coupled to AC 

and cAMP (Lachowicz and Sibley, 1997). While co-localization of presynaptic D1 

and D2 receptors in the Acb is common (Wong et al., 1999), different populations 

of MSNs express either D1 or D2 receptors postsynaptically almost exclusively 

(Le Moine and Bloch, 1996; Lee et al., 2006). However, mixed physiological 

response-patterns to receptor manipulation are often observed due to the co-

expression of the D3 receptors on D1-expressing MSNs in the AcbSh (Le Moine 

and Bloch, 1996; Ridray et al., 1998). Activation of D1 receptors in the Acb 

enhances glutamatergic drive (Chergui and Lacey, 1999; West and Grace, 2002) 

via increased AC activity (Sibley et al., 1993), while activation of D2 receptors 

inhibits Acb neurons via decreased AC activity (White and Wang, 1986; 

O’Donnell and Grace, 1996). MSNs with D2 receptors project almost exclusively 

to the VP, whereas D1-containing MSNs project to both the VP and VTA (Lu et 

al., 1997, 1998). 

 Ventral Tegmental Area: Regional Heterogeneity 

 

In addition to differences in morphology and connectivity, the VTA is also 

functionally heterogeneous with regards to drugs of abuse. Using viral-mediated 

gene transfer, over-expression of glutamate receptor subunit type one (Carlezon 

et al., 2000) or phospholipase C gamma-1 (Bolanos et al., 2003) in the aVTA 

increased morphine place preference, while over-expression in the pVTA 

resulted in morphine place avoidance. Moreover, over-expression of cAMP-

response-element-binding protein (CREB) in the aVTA increased place 

preference for either cocaine or morphine, while over-expression in the pVTA 

resulted in place avoidance for these drugs (Olson et al., 2005). Furthermore, a 
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number of drugs of abuse and receptor ligands are self-administered directly into 

the pVTA, but not the aVTA, using the ICSA paradigm. These drugs include: 

cocaine (Rodd et al., 2005a), nicotine (Ikemoto et al., 2006), ethanol (Rodd et al., 

2004a,b, 2005b,c,d; Rodd-Henricks et al., 2000a, 2003), the ethanol metabolites 

acetaldehyde and salsolinol (Rodd et al., 2005d, 2008; Rodd-Henricks et al., 

2002b), delta-9 tetrahydrocannabinol (THC; Zangen et al., 2006), endomorphin-1 

(Zangen et al., 2002), a serotonin receptor type 3 (5-HT3) agonist (Rodd et al., 

2007), and a muscarinic ACh receptor agonist (Ikemoto and Wise, 2002). 

Moreover, THC, endomorphin-1 and the muscarinic agonist produced a place 

preference when injected into the pVTA, but not aVTA, using an intracranial 

place-conditioning paradigm (Ikemoto and Wise, 2002; Zangen et al., 2002, 

2006). 

 Nucleus Accumbens: Regional Heterogeneity 

 

A number of experiments observed a functional divide in the Acb in 

addition to the observed heterogeneity found in the VTA. Repeated injections of 

amphetamine into the AcbSh, but not AcbC, produced both a behavioral 

sensitization to locomotor stimulation and a neurochemical sensitization to 

increases in DA (Pierce and Kalivas, 1995). Moreover, amphetamine 

sensitization increased presynaptic proteins associated with synaptic plasticity 

and the regulation of DA release in the AcbSh, but reduced protein levels in the 

AcbC (Subramaniam et al., 2001). Similarly, chronic cocaine treatment produced 

a robust and persistent depression in MSN activity in the AcbSh, while MSNs in 

the AcbC were transiently activated (Kourrich and Thomas, 2009). Systemic 

administration of cocaine, morphine, and amphetamine preferentially increase 

extracellular DA in the AcbSh compared with the AcbC (Pontieri et al., 1995). 

The AcbSh was also more responsive than the AcbC to systemic administration 

of D1 receptor agonists and antagonists when measuring ACh output (Consolo et 

al., 1999). Interestingly, injections of N-methyl-D-aspartic acid (NMDA) 
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antagonists into the AcbC, but not the AcbSh, reduced cocaine-induced 

locomotor activity (Pulvirenti et al., 1994).  

Direct stimulation of D1 or D2 receptors within the AcbSh, but not the 

AcbC, produced a cocaine-primed ‘reinstatement of responding’ following 

cocaine IVSA and extinction (Bachtell et al., 2005; Schmidt et al. 2006) blocked 

by co-infusion of the respective receptor antagonist (Schmidt and Pierce, 2006). 

Conversely, D1 or D2 receptor antagonists injected into the AcbSh, but not the 

AcbC, blocked the ‘reinstatement of responding’ (Anderson et al., 2003, 2006; 

Bachtell et al., 2005). In addition, 6-hydroxydopamine lesions to the AcbSh, but 

not the AcbC, attenuated the conditioned place preference (CPP) for cocaine, 

while lesions to the AcbC, but not the AcbSh, reduced cocaine-induced increases 

in locomotor activity (Sellings et al., 2006). Both contingent (Hemby et al., 1997; 

Parsons et al., 1995) and non-contingent (Cadoni and Di Chiara, 1999; Hedou et 

al., 1999; Pontieri et al., 1995) administration of cocaine produced greater 

increases in DA within the AcbSh than the AcbC. Lastly, DA terminals in the 

AcbSh, but not the AcbC, can co-release glutamate (Stuber et al., 2010). 

Utilizing the ICSA method, rats learned to self-administer the following 

agents into the AcbSh, but not the AcbC: cocaine (Katner et al., 2011, Rodd-

Henricks et al., 2002a), ethanol (Engleman et al., 2009), the ethanol metabolite 

salsolinol (Rodd et al., 2003b), amphetamine (Ikemoto et al., 2005), THC 

(Zangen et al., 2002), a DA reuptake inhibitor (Carlezon et al., 1995), a 

combination of D1 and D2 agonists (but neither individually; Ikemoto et al., 

1997a), a muscarinic ACh agonist (Ikemoto et al., 1998), and NMDA antagonists 

(Carlezon and Wise, 1996). Additionally, rats displayed a CPP for injections of 

THC into the AcbSh, but not into the AcbC (Zangen et al., 2002). Overall, 

connections from the pVTA to the AcbSh appear to be important for modulating 

motivational salience and establishing learned associations between motivational 

events and concurrent environmental stimuli, whereas the aVTA-AcbC circuit 

primarily mediates the expression of learned behaviors in response to stimuli 
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predicting motivational relevant events (Bassareo and Di Chiara, 1999; Di Ciano 

and Everitt, 2001; Kelley, 2004; Ikemoto; 2007).  

 Drugs of Abuse Produce Alterations in Mesocorticolimbic Functioning 

 

Compulsive and maladaptive behaviors associated with excessive drug 

taking and drug seeking result from persistent, and possibly, permanent 

alterations in the functioning of the MCL DA system and associated structures 

(Hyman et al., 2006; Kalivas, 2009; Koob and Volkow, 2010; Nestler, 2001; Wise, 

2004). A key feature of addiction is the compromised ability to suppress 

compulsive drug seeking, even when faced with serious adverse consequences 

(Kalivas, 2009; Kalivas and Volkow, 2005). A susceptibility to relapse can remain 

for years after abstinence from drug use, and underscores the contributions of 

repeated drug exposure, genetic background, and associations between 

environmental stimuli and drug use (learning). During the initial experiences with 

drugs of abuse, the acute pharmacological drug effects and the relevant 

associative learning processes concomitantly activate the same neural circuitry 

(e.g. MVM DA: neuronal firing in the pVTA and increased DA release in the 

AcbSh). With continued drug use, the dopaminergic response within the AcbSh 

became sensitized to the acute drug effects (Hooks et al., 1994; Kalivas, 2009; 

Lecca et al., 2007; Madayag et al., 2010). Moreover, continued drug use 

produced maladaptive functional changes in the VTA, by increasing the strength 

of excitatory inputs along with a reduction in inhibitory input (Chen et al., 2010).  

Research continues to elucidate specific mechanisms by which different 

drugs disrupt tonic and phasic DA signaling in MVM DA and other circuits, the 

functional significance of this disruption, and the cellular and molecular 

substrates by which drugs modify synapses and circuits. The initial stages of 

addiction likely involve the acquisition of excessive incentive–motivational 

properties by drug conditioned stimuli, as a result of drugs effectively ‘stamping-

in’ maladaptive associations between the primary reinforce and drug cues via the 
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coincident activation of the MVM DA pathway (Di Chiara, 1999; Ikemoto and 

Panksepp, 1999; Robinson and Berridge, 1993). Furthermore, the development 

of addiction (e.g. progression from actions to habits to compulsive behavior) 

coincides with the progression of neuronal adaptations from limbic to cortical 

areas, from ventromedial to dorsolateral striatal systems, and from dopaminergic 

to glutamatergic control (Everitt and Robbins, 2005; Kalivas, 2009; Lane et al., 

2010; Schmidt and Pierce, 2010; Sesack and Grace, 2010). 

 Acute Reinforcing and Dopamine Neuronal Stimulating Effects of Cocaine within 

the Mesoaccumbens Circuit 

 

Abused drugs (e.g. ethanol, cocaine, nicotine, amphetamine, morphine, 

THC) produced increased levels of DA in the Acb (Di Chiara and Imperato, 

1988), albeit often through divergent substrates (Koob et al., 1998). For example, 

cocaine binds to norepinephrine, serotonin, and DA transporters (NET, SERT, 

and DAT, respectively) to inhibit the uptake of these neurotransmitters (Reith et 

al., 1986; Ritz et al., 1990). While the potency for cocaine reinforcement is 

strongly correlated with the affinity at the DAT (Ritz et al., 1987), knockout 

studies suggest SERT also plays a significant role in cocaine reinforcement (Filip 

et al., 2005; Hall et al., 2004; Sora et al., 2001). The net effect of cocaine to 

increase DA levels in the Acb activates local D1 and D2 receptors, and the 

concurrent stimulation of these receptors is required for cocaine sensitization 

(Henry et al., 1998). Injections of cocaine into the AcbSh, but not the AcbC, 

produced locomotor activation, CPP, and operant responding for self-infusion 

(Filip and Siwanowicz, 2001; Ikemoto, 2002; Katner et al., 2011; Liao et al., 2000; 

Rodd-Henricks et al., 2002a). The local effects of cocaine on DAoutput require 

neuronal impulse flow (Nomikos et al., 1990), both in the VTA (Chen and Reith, 

1994a) and in the Acb (Westerink et al., 1987). Furthermore, VTA DA neuronal 

firing is required for cocaine to increase DA levels within the AcbSh (Aragona et 

al., 2008; Sombers et al., 2009).  
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In human imaging studies, VTA activation was associated with the 

subjective experience of euphoria following cocaine administration (Breiter et al., 

1997; Breiter and Rosen, 1999). In animals, injections of cocaine into posterior 

portions of the VTA produced behavior sensitization and operant responding for 

self-infusion (Cornish and Kalivas, 2001; David et al., 2004; Rodd et al., 2005a). 

Similar to the Acb, cocaine inhibited monoamine uptake within the VTA, 

increasing local levels of DA, serotonin, and norepinephrine (Chen and Reith, 

1994a,b). While the relative uptake potency has not been examined in the VTA, 

cocaine was more potent inhibiting serotonin versus DA uptake in the Acb 

(Matecka et al., 1996; Uchimura and North, 1990). Cocaine-induced increases in 

VTA serotonin levels activated local serotonin type 1B receptors (5-HT1B), 

serotonin type 2A receptors (5-HT2A), and 5-HT3 receptors to putatively stimulate 

VTA DA neurons and increase DA levels in the Acb (McMahon and Cunningham, 

2001; O’Dell and Parsons, 2004; Rodd et al., 2005a).  

Furthermore, cocaine potentially acts indirectly through local glutamatergic 

functioning to increase VTA DA neuronal activity. Stimulation of glutamatergic 

tone to the VTA induced burst firing of DA neurons and increased the number of 

spontaneously active DA neurons (Kalivas, 1993; White, 1996). Cocaine-induced 

increases in VTA DA levels activated presynaptic D1 receptors to increase local 

glutamate levels (Kalivas and Duffy, 1995), while D1 receptor blockade in the 

VTA reduced the reinforcing effects of IVSA cocaine (Ranaldi and Wise, 2001). 

Moreover, impairment of VTA glutamatergic function attenuated: responding for 

cocaine conditioned stimuli (You et al., 2007), the acquisition of cocaine CPP 

(Harris and Aston-Jones, 2003), and behavioral sensitization to cocaine (Kalivas 

and Alesdatter, 1993). A single injection of cocaine, amphetamine, nicotine, 

morphine, or ethanol produced both a long-term potentiation (LTP) of excitatory 

glutamate synapses (Saal et al., 2003) and an impairment of LTP of inhibitory 

GABA synapses (Guan and Ye, 2010; Niehaus et al., 2010) on VTA DA neurons.  
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 Chronic Ethanol Exposure: Effects on Neurobiology and Behavior 

 

Ethanol appears to produce acute reinforcement through direct activation 

of VTA DA neurons (Brodie et al., 1999; Gessa et al., 1985; Verbanck et al., 

1990). Chronic ethanol exposure produces neuronal alterations in dopaminergic 

functioning in both the Acb and VTA (Fadda and Rossetti, 1998; Vengeliene et 

al., 2008). For example, chronic continuous voluntary ethanol drinking by alcohol-

preferring rats produced an up-regulation in dopaminergic functioning within the 

Acb. Specifically, ethanol-drinking experience produced increased extracellular 

DA levels (Thielen et al., 2004), decreased D2 autoreceptor function (Engleman 

et al., 2003), accelerated DA uptake (Carroll et al., 2006), and increased the 

effectiveness of a DAT-inhibitor to increase extracellular DA levels (Engleman et 

al., 2000). In the VTA, chronic ethanol drinking by alcohol-preferring rats 

increased the number of spontaneously active VTA DA neurons (Morzorati et al., 

2010), while decreasing pVTA DA levels (Engleman et al., 2011). Furthermore, 

chronic voluntary ethanol drinking in outbred rats increased the number of DAT 

binding sites in the Acb and VTA (Jiao et al., 2006). Chronic ethanol drinking 

increased the sensitivity of VTA DAneurons to the DA-neuronal-stimulating and 

reinforcing effects of ethanol (Brodie, 2002; Rodd et al., 2005b,c). In addition, 

repeated local injections of ethanol sensitized pVTA DA neurons to the 

stimulating actions of ethanol (Ding et al., 2009a). Chronic ethanol drinking also 

influenced subsequent behavioral and neurobiological responses to cocaine. 

Wistar rats with ethanol-drinking experience displayed a greater increase 

in Acb DA in response to the local application of cocaine compared to naïve 

controls (Yoshimoto et al., 2000), and mice with repeated ethanol exposure 

displayed a CPP for cocaine associated with enhanced synaptic plasticity of 

NMDA receptors on VTA DA neurons (Bernier et al., 2011).  Furthermore, Wistar 

rats with high levels of ethanol drinking were more sensitive to cocaine CPP and 

locomotor activation than low ethanol-drinking rats (Stromberg and Mackler, 

2005). Other studies also observed an enhanced locomotor response to cocaine 
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after chronic ethanol exposure (Hopf et al., 2007; Manley and Little, 1997) Rats 

with high levels of operant lever responding for oral ethanol subsequently 

displayed a more rapid acquisition of lever responding for IVSA cocaine 

compared to animals with lower levels of ethanol responding (Mierzejewski et al., 

2003). Chronic ethanol exposure produced abolished the subsequent 

conditioned taste aversion to cocaine seen in ethanol-naïve animals (Kunin et al., 

1999; Grakalic and Riley, 2002).  

Other drugs of abuse produced neurobiological and behavioral alterations 

similar to those seen with chronic ethanol exposure. For example, chronic 

ethanol, cocaine, or morphine treatment increased levels of NMDA type 1 

(NMDAR1) and glutamate type one (GluR1) ionotropic glutamate receptor 

subunits, while decreasing levels of the GABA receptor A (GABAA) alpha-1 

subunit in the VTA (Fitzgerald et al., 1996; Ortiz et al., 1995). Repeated systemic 

ethanol, nicotine, morphine, or cocaine treatments produced an enhanced 

locomotor response to a subsequent injection of cocaine, associated with a long-

term enhancement of evoked DA and ACh release in the Acb (Nestby et al., 

1997). Repeated cocaine or ethanol injections produced an enhanced locomotor 

response to a subsequent injection with the opposite drug, an effect associated 

with an increased number of striatal DAT binding sites (Itzhak and Martin, 1999).  

 Genetic Factors Associated with Drug and Alcohol Abuse 

 

An increased risk for the development of a drug or alcohol use disorder is 

significantly greater for those with an identified genetic risk factor (Heath et al., 

1997; Lopez-Quintero et al., 2011b; Nurnberger et al., 2004). These risks are 

often associated with differences in the expression of specific genes associated 

with neurotransmission (Edenberg and Kranzler, 2005; Kohnke, 2008). 

Moreover, certain genes are associated with multiple substance use disorders, 

such as the gene encoding the tackykinin 3 receptor, which is associated with 

both alcohol and cocaine dependence (Foroud et al., 2008).  
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Animal research has attempted to investigate the role of genetic 

background on drug and alcohol use and abuse through the characterization of 

individual differences in outbred rat strains or with the selective breeding of a 

specific phenotype from a heterogeneous stock of animals. Selective bi-

directional breeding has established high- and low-alcohol drinking lines to serve 

as reliable models for assessing genetic predispositions associated with the 

contrasting extremes of alcohol use observed in human populations (Murphy et 

al., 2002). To date, bi-directional breeding for ethanol preference versus non-

preference has produced five sets of alcohol-preferring and -nonpreferring lines. 

These include the University of Chile A and B lines (Mardones and Segovia-

Riquelme, 1983), the Sardinian alcohol-preferring/nonpreferring lines (Colombo, 

1997), the ALKO alcohol/nonalcohol lines (Eriksson, 1968), the Indiana 

University alcohol-preferring/nonpreferring (P/NP) lines (Lumeng et al., 1977), 

and the Indiana University high/low alcohol-drinking replicate lines (Li et al., 

1993). The Indiana P rat line, derived by selective breeding from an outbred 

Wistar stock, has been thoroughly tested and found to fulfill the necessary criteria 

for an animal model of alcoholism originally proposed by Lester and Freed (1973) 

and Cicero (1979).  

The P line of alcohol-preferring rats will orally self-administer significant 

levels of ethanol; reach pharmacologically relevant blood ethanol levels (200 

mg%) during 24-h free-choice ethanol drinking; consume alcohol for 

pharmacological effects and not caloric value or taste; work for the operant oral, 

intracranial, and intragastric self-administration of ethanol to show positive 

reinforcement; show expression of functional and metabolic tolerance after 

chronic consumption of ethanol; and show withdrawal symptoms (a sign of 

dependence) after chronic ethanol consumption and termination of ethanol 

access (McBride and Li, 1998; Murphy et al., 2002). In addition, the P line also 

meets an additional criterion proposed by McBride and Li (1998) – the alcohol-

deprivation effect. P rats show an alcohol-deprivation effect, represented by a 

transitory increase in the level of ethanol consumption after a single period or 
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multiple periods of forced abstinence. The alcohol-deprivation effect may be a 

useful model for studying the human phenomenon of relapse, ‘loss of control’, or 

‘binge’ drinking (Murphy et al., 2002).  

P and NP rats represent two divergent neurobiological phenotypes of 

alcohol preference. P rats, compared to NP rats, had significantly lower levels of 

serotonin and the primary metabolite 5-hydroxyindoleacetic acid in a number of 

cortical and limbic regions, including the Acb (Murphy et al., 1982, 1987). 

Appropriately, P rats had less dense serotoninergic innervation of many of these 

regions, including the Acb, than NP rats (Zhou et al., 1991). P and NP rats also 

displayed differences in serotonin receptor densities in a number of limbic brain 

regions (Murphy et al., 2002). Moreover, P rats had lower levels of DA and the 

metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid in the Acb and 

fewer dopaminergic projections from the VTA to the Acb, compared to NP rats 

(Murphy et al., 1982, 1987; Zhou et al., 1995). Compared to NP rats, P rats 

possessed pVTA DA neurons with more action potentials in bursts and a greater 

number of bursts (Morzorati and Marunde, 2006). Lastly, P rats had relatively 

higher densities of mu-opioid receptors in the AcbSh and AcbC, but lower levels 

of CRF in the amygdala (Ehlers et al., 1992; McBride et al., 1998).  

In addition to alcohol-preference and neurobiology, high and low alcohol-

preferring lines were characterized by phenotypic differences in the response to 

other drugs of abuse. Alcohol-preferring rats were more sensitive to the effects of 

cocaine compared to alcohol-non-preferring and outbred rat strains when 

measured by: operant reinforcement (Katner et al., 2011; Marttila et al., 2007), 

locomotor activation (Honkanen et al., 1999; Mikkola et al., 2002), AcbSh 

dopaminergic response (Leggio et al., 2003), neurochemical sensitization of 

AcbSh DA (Mikkola et al., 2001), and drug-induced reinstatement of cocaine-

seeking behavior (Le et al., 2006). In addition, peripheral injections of either 

cocaine or ethanol produced significantly greater Acb DA release in mice bred for 

sensitivity to the locomotor activating effects of ethanol compared to ethanol-

insensitive mice (Meyer et al., 2009). Selective breeding for alcohol preference 
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potentially produced pleiotropic effects of the genes underlying the selected 

phenotype for a general preference for drugs of abuse.  

Reciprocal genetic factors may affect both the intake of sweetened 

substances and drug self-administration (Carroll et al. 2008). Compared to rats 

selectively bred for saccharin non-preference (LoS), rats bred for saccharin 

preference (HiS) displayed enhanced acquisition, maintenance, escalation, 

extinction, and reinstatement of cocaine IVSA (Carroll et al., 2002, 2007, Dess et 

al., 1998; Perry et al., 2006). HiS animals also displayed a greater cocaine-

induced locomotor activation and a potentiated locomotor sensitization compared 

to LoS animals (Carroll et al., 2007). In addition to selective breeding, studies 

also examined individual differences in drug-related behaviors. A model of 

spontaneous addiction liability characterizing rats by the locomotor activity to a 

novel environment was developed, resulting in a divergent response to 

psychostimulants between high-responder (HR) and low-responder (LR) to 

novelty rats. Compared to LR rats, HR rats: exhibited a greater locomotor and 

Acb dopaminergic response to cocaine or amphetamine (Hooks et al., 1991, 

1992; Piazza et al., 1989), acquired cocaine or amphetamine IVSA more rapidly 

(Marinelli and White, 2000; Piazza et al., 1990), were quicker to escalate cocaine 

intake (Grimm and See, 1997), displayed increased maximal responding at peak 

doses of cocaine (Piazza et al., 2000), and more robust and persistence 

increases in VTA DA neuronal firing during acute withdrawal from cocaine 

(McCutcheon et al., 2009). The interactions between genetic background and 

drug exposure also produced unique behavioral effects. For example, repeated 

ethanol injections increased basal DA levels in P and Wistar rats, but not NP rats 

(Smith and Weiss, 1999). Ethanol exposure also increased basal serotonin levels 

in NP and Wistar rats, but decreased levels in P rats. 
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 Objectives and Experimental Rationale 

 

The objectives of the present study are to determine if chronic continuous 

ethanol-drinking experience produces: (1) alterations in the sensitivity of the 

AcbSh to the reinforcing effects of cocaine, (2) changes in the magnitude and 

time course of the local stimulating effects of cocaine on pVTA DA neurons, (3) a 

persistence of alterations in the stimulating effects of cocaine after a period of 

protracted abstinence. The first hypothesis is that long-term continuous voluntary 

ethanol-drinking experience will produce an increased sensitivity to the 

reinforcing effects of cocaine within the AcbSh of P rats. This will be evidenced 

by the ability of a previously subthreshold dose of cocaine to reliably support self-

administration on a fixed ratio (FR) schedule of reinforcement (i.e. leftward shift 

in the dose-response curve). The second hypothesis is that the protocol of 

ethanol drinking from Experiment 1 will produce an increase in the local 

stimulating effects of cocaine on pVTA DA neurons. This will be evidenced by the 

ability of a previously subthreshold dose of intra-pVTA cocaine to produce a 

significant increase in AcbSh DA release The ability of suprathreshold doses to 

produce a greater maximal dopaminergic response (i.e. upward shift in the dose-

response curve) would also support the second hypothesis. The third hypothesis 

is that the potential alterations in the local stimulating effects of cocaine on pVTA 

DA neurons observed in Experiment 2 will remain after a 30-d period of 

protracted abstinence from ethanol drinking. This will be evidenced by similar 

profiles of AcbSh dopaminergic response across the range of cocaine doses 

examined for ethanol-abstinent rats relative to animals with continuous ethanol-

drinking experience. The current experiments will determine if chronic continuous 

voluntary ethanol drinking by animals selectively bred for ethanol preference and 

resulting in moderate to high levels of ethanol intake: (1) initiates alterations in 

the sensitivity to the reinforcing effects of cocaine within the AcbSh and (2) 

produces long-lasting functional changes in cocaine-evoked mesolimbic DA 

neurotransmission associated with changes in reinforcement.  
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The rationale for this study is supported by evidence suggesting 

polysubstance abuse: was more common than misuse of a single drug of abuse, 

was more likely to occur in those with a genetic predisposition to substance 

abuse, and generally occurred in a sequence with the initiation of ‘gateway’ drug 

(e.g. alcohol) use preceding the initiation of illicit drug (e.g. cocaine) use. Ethanol 

and cocaine use activates reinforcement circuitry in similar manner, albeit 

through distinct mechanisms of action. As a result, chronic ethanol drinking has 

the potential to produce functional alterations in cocaine’s central effects via 

ethanol-induced plasticity to reinforcement substrates unique to cocaine, as well 

as through changes in shared targets. Animal models can examine the effects of 

so-called ‘gateway’ drugs on the initiation and escalation of illicit drug use at a 

number of levels, including molecular, neurotransmitter, electrophysiological, 

systems, and behavioral. These experimental studies control factors with 

significant influence in clinical studies, such as the relative drug availability. 

Moreover, animal models of drug and alcohol also examined genetic 

contributions to drug use and maladaptive behavioral profiles, providing an 

additional line of evidence to complement human genetic studies.  

Results demonstrating chronic ethanol-drinking experience contributed to 

an increased sensitivity to the central reinforcing and neuronal activating effects 

of cocaine would support the concept of alcohol as a ‘gateway’ drug to increase 

the likelihood of future cocaine use. Translationally, these findings would suggest 

effective behavioral and/or pharmaceutical interventions would not only reduce 

the initiation and escalation of alcohol drinking, but could also reduce the risk of 

progression to illicit drug use. Future experimental studies should elucidate the 

genetic contributions of the observed effects, as well as the putative substrates of 

ethanol-induced adaptations. This, in turn, could identify human risk factors and 

develop targeted pharmaceutical treatments. 
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2. METHODS 

 Animals 

 

Selectively-bred adult female P rats from the 61st to 68th generations, 

weighing 220 to 280 g at the time of initial ethanol exposure, were obtained from 

the Indiana University breeding colony. Rats were pair-housed inside standard 

opaque plastic tubs upon arrival and were maintained on a 12-h reverse 

light/dark cycle (lights off at 1000 hr) in a temperature and humidity controlled 

environment. Food and water were freely available except in the test chambers. 

All experimental procedures, including surgery, ICSA, and microdialysis were 

conducted during the dark phase.  

The current study used female P rats because females maintain body 

weight and head size better than males, producing more accurate stereotaxic 

placements (Rodd et al., 2004a,b, 2005a,b,c,d; Rodd-Henricks et al., 2000a, 

2003). Although it is possible to delineate the anterior and posterior VTA in male 

P rats, small variations in skull thickness and shape (which appear to be greater 

in male than female rats) require alteration of coordinates from animal to animal, 

reducing placement reproducibility. Most of our previous ICSA studies used 

female rats (Gatto et al., 1994; Rodd et al., 2003b, 2004a, 2005 a,b,c,d; Rodd-

Henricks et al., 2000a, 2002a,b, 2003). Although not systematically studied, the 

estrous cycle did not appear to significantly alter self-administration behavior, as 

indicated by stable responding across several sessions when the same 

concentration of ethanol (Rodd-Henricks et al., 2003) was given. Furthermore, a 

significant gender effect for the self-infusion of ethanol was not observed in a 

recent study using male rats (Rodd et al., 2004b). Lastly, peripheral 
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administration of ethanol produced the same brain ethanol pharmacokinetic 

profile across different stages of the estrous cycle (Crippens et al., 1999; 

Robinson et al., 2002), although the rate of ethanol clearance within the brain 

may be different between males and females (Robinson et al., 2002). 

Additionally, no consistent effects of estrous cycle in female P rats were 

observed in previous studies on DA efflux (Ding et al., 2009a,b; Engleman et al., 

2003; Kohl et al., 1998) 

Animals used in this experiment were maintained in facilities fully 

accredited by the American Association for the Accreditation of Laboratory 

Animal Care. All research protocols were approved by the institutional animal 

care and use committee and are in accordance with the guidelines of the 

Institutional Care and Use Committee of the National Institute on Drug Abuse, 

NIH, and the Guide for the Care and Use of Laboratory Animals (National 

Research Council, 1996). For ICSA experiments, the number of animals 

indicated for each experiment represents approximately 90% of the total number 

undergoing surgery. The remaining 10% were not included in the analysis 

because their injection sites could not be verified due to the loss of the cannulae 

or because the animal failed to complete all experimental test sessions. For 

microdialysis experiments, the number of animals indicated for each experiment 

represents approximately 80% of the total number undergoing surgery. The 

remaining 20% were not included in the analysis because: the injection sites 

could not be verified due to the loss of the cannulae, the animal did not survive 

probe implantation, an insufficient sample volume was collected during 

microdialysis, or complications with high performance liquid chromatography 

(HPLC) sample analysis occurred. 

 Drinking Procedures 

 

After a 2-wk habituation to the home-cage room, animals received access 

to either water alone (ethanol-naïve; N) or water and 15% v/v ethanol solution 
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(continuous ethanol; CE) for at least 12 wk before stereotaxic surgery.  For 

microdialysis experiments, an additional group of animals received access to 

water and 15% v/v ethanol solution for at least 12 wk followed by 30 d with water 

alone (ethanol-abstinent; Ab). Animals were handled and weighed on weekdays. 

Weights of the ethanol solution were monitored and recorded during the final 9 

wk of drinking. Beginning 14 d before surgery, ethanol access was removed for 

one hr/d for the CE group. The length ethanol deprivation was incrementally 

increased during the following 7 d to a final duration of 4 hr/d. Nearly all past 

operant and free-access ethanol-drinking experiments utilizing P rats used 15% 

v/v ethanol, a concentration at which P rats display high levels of intake and 

preference. Ethanol intakes were converted to g/kg/d. 

 Chemical Agents 

 

MgCl2*6H2O, Na2HPO4*7H2O, H3PO4, ethylenediaminetetraacetic acid 

disodium salt dehydrate (EDTA), 1-octanesulfonic acid sodium salt (OSA), 

methanol, NaCl, and D-glucose were obtained from Sigma (St. Louis, MO). KCl, 

CaCl2*2H2O, MgSO4, KH2PO4, and NaHCO3 were obtained from Fisher Scientific 

(Fair Lawn, NJ). The artificial cerebrospinal fluid (aCSF) vehicle for ICSA or 

microinjection consisted of 120.0 mM NaCl, 4.75 mM KCl, 1.2 mM KH2PO4, 1.2 

mM MgSO4, 25.0 mM NaHCO3, 2.5 mM CaCl2*2H2O, and 10.0 mM D-glucose. 

The 2.5 mM concentration of CaCl2*2H2O has been commonly used for in vitro 

electrophysiological studies (Bonci and Malenka, 1999; Brodie et al., 1990) and 

ICSA studies (Ikemoto et al., 1997a; Rodd-Henricks et al., 2000a; 2002a). 

Cocaine HCl was obtained from the National Institute on Drug Abuse (Bethesda, 

MD). Cocaine was dissolved into the aCSF solution at the desired concentration 

and the pH was adjusted to 7.2 to 7.4 using 0.1 N HCl or 0.1 N NaOH prior to 

use. Microdialysis aCSF consisted of 145.0 mM NaCl, 2.7 mM KCl, 1.0 mM 

MgCl2*6H2O, 1.2 mM CaCl2*2H2O, and 2.0 mM Na2HPO4*7H2O, with the pH 

adjusted to 7.2 to 7.4 using 0.1 N HCl or 0.1 N NaOH prior to use. 
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 Histology 

 

At the termination of each experiment, the animals were euthanized with a 

fatal dose of inhaled carbon dioxide. Bromophenol blue (1%) was injected into 

the infusion site for 30 s at a rate of 1.0 µl/min. For microdialysis experiments, 

bromophenol blue was also perfused through the probes. Brains were quickly 

removed and immediately frozen at -70°C. Frozen brains were allowed to 

equilibrate at -15°C in a cryostat microtome before being sliced into 40-µm 

sections. Sections were stained with cresyl violet and examined under a light 

microscope for precise identification of the injection site using the rat brain atlas 

of Paxinos and Watson (2005). Additionally, a second individual, blind to the 

subjects’ group assignment, verified all histologies. 

 Sensitization of Cocaine Reinforcement within the Nucleus Accumbens Shell 

Following Chronic Ethanol Drinking 

 Animal Preparation 

 

While under isoflurane anesthesia, a unilateral 22-gauge guide cannula 

(Plastics One Inc., Roanoke, VA) was stereotaxically implanted into the right 

hemisphere of each subject, aimed 1.0 mm above the AcbSh from a 10° angle to 

the vertical. Coordinates (Paxinos and Watson, 2005) for placements into the 

AcbSh were 1.7 mm anterior to bregma (AP +1.7 mm), 2.3 mm lateral to the 

midline (ML +2.3 mm), and 7.5 mm ventral from the surface of the skull (DV -7.5 

mm). Coordinates for placements into the AcbC or ventral to the AcbSh were AP 

+1.4 mm, ML +2.6 mm, DV -7.0 mm or AP +1.4 mm, ML +2.3 mm, DV -8.0 mm, 

respectively. In between experimental sessions, a 28-gauge stylet was placed 

into the 22-gauge guide cannula and extended 0.5 mm beyond the tip of the 

guide. Rats were single-housed following surgery. Each subject was handled for 
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at least 5 min daily following the third recovery d. Subjects were not acclimated to 

the test chamber prior to the commencement of data collection, nor were they 

previously trained on any operant paradigm. 

 Intracranial Self-administration Apparatus 

 

The test chambers (30 x 30 x 26 cm, width x height x depth) were situated 

in sound-attenuating cubicles (64 x 60 x 50 cm; Coulbourn Instruments, 

Allentown, PA), which were illuminated by a dim house light during testing. Two 

identical levers (3.5 x 1.8 cm) were mounted on a single wall of the test chamber, 

15 cm above a grid floor, and were separated by 12 cm. Levers were raised to 

this level to avoid accidental brushing against the lever and to reduce responses 

as a result of general locomotor activity. Directly above each lever was a row of 

three different colored cue lights. The light (red) to the far right over the active 

lever was illuminated during resting conditions. A desktop computer equipped 

with an operant control system (L2T2 or Graphic State 3.0; Coulbourn 

Instruments) recorded the data and controlled the delivery of infusate in relation 

to lever response. An electrolytic microinfusion transducer (EMIT) system 

developed by Criswell (1977; see Bozarth and Wise, 1980; Goeders and Smith, 

1987) was used to control injections of drug or vehicle. Briefly, two platinum 

electrodes were placed in an airtight drug reservoir (28 mm in length x 6 mm in 

diameter) equipped with a 28-gauge injection cannula (Plastics One, Roanoke, 

VA). The electrodes were connected by a spring-coated cable (Plastics One) and 

swivel (model 205; Mercotac, Carlsbad, CA) to a constant current generator 

(MNC, Shreveport, LA or A-M Systems, Sequim, WA). A 10 µA of quiescent 

current was used to maintain electrodes in a ready state without ejecting or 

aspirating any solution. The current generator was calibrated to produce 225 µA 

of current between the electrodes during infusion. 
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Depression of the active lever delivered the infusion current for five s, 

which led to the rapid generation of hydrogen gas (raising the pressure inside the 

airtight cylinder) and, in turn, forced 100 nl of the solution through the injection 

cannula into the brain. During the 5-s infusion and additional 5-s time-out period, 

the house light and right cue light (red) were extinguished, and the left cue light 

(green) over the active lever flashed on and off at 0.5-s intervals. Depression of 

the inactive lever did not result in any infusion. See Figure 1 for an illustration of 

the EMIT apparatus. The amount of drug infused is directly related to the amount 

of hydrogen gas generated, which is directly proportional to the current intensity 

and duration, as well as the gas constant (Criswell, 1977). The EMIT system was 

calibrated prior to the experiments and once each month subsequently. 

 General Test Condition 

 

For CE groups, ethanol bottles were removed 4 h before the 

commencement of ICSA, in order to minimize any appreciable blood ethanol 

levels. Seven d after surgery, subjects were brought to the testing room, the 

stylet removed, and the injection tank carefully screwed into place. Rats were 

placed individually in the test chambers with the injection needles extended 1.0 

mm beyond the tip of the guide. To avoid trapping air at the tip of the injection 

needle, the infusion current was delivered for five s during insertion of the 

injector, resulting in a single non-contingent administration of drug or vehicle 

(priming) at the beginning of the session. No shaping technique was used to 

facilitate the acquisition of lever responses. The L2T2 or Graphic State 3.0 

computer program recorded the number of infusions and responses on the active 

lever. The program also recorded inactive lever responses, which did not 

produce infusions. Depression of the active lever (FR1 schedule of 

reinforcement) caused the delivery of a 100-nl bolus of solution over a 5-s period 

followed by a 5-s time-out period. The program also recorded active lever 

responses during both the infusion and time-out periods, when responses did not 
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produce additional infusions. The assignment of active and inactive lever with 

respect to left or right position was counterbalanced among subjects. However, 

the active and inactive levers remained the same for each subject throughout the 

experiment. The duration of each experimental session was 4 hr, and sessions 

occurred every other day at the same time (approximately 1400-2000 hr).  

 

 

Figure 1. Photograph of rat depressing on the active lever for an injection of 
infusate (top) and a diagram of the electrolytic microinfusion transducer (EMIT) 
system used for the intracranial self-administration (ICSA) of cocaine solution 
(bottom; adapted from Bozarth and Wise, 1980 and Criswell, 1977). 
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 Experimental Groups 

 

For both the N and CE groups, animals with cannula aimed at the AcbSh 

were randomly assigned to one of seven groups (n = 6-7/group). Vehicle groups 

received infusions of aCSF for all eight sessions. All other groups received 

infusions of 10, 50, 100, 200, 400, or 800 pmol / injection (0.1-8.0 mM) cocaine 

for the Sessions 1-4 and Session 8. These groups received the vehicle (aCSF) 

alone for Sessions 5-7. For both N and CE pretreatment, animals with 

placements aimed dorsolateral (e.g. AcbC) or ventromedial to the AcbSh were 

assigned to receive infusions of 0.5, 2.0, 4.0, or 8.0 mM cocaine in the 

experimental protocol described previously.  Data from animals assigned to the 

AcbSh, but with histologically verified placements within the AcbC or ventral 

regions, were included with data from the planned anatomical controls. 

 Statistical Analysis 

 

All data were expressed as mean ± standard error of the mean (SEM). 

The initial analysis consisted of a two factor (pretreatment x dose) ANOVA 

performed on the average number of reinforcers infused during the first four 

sessions (acquisition). Further data analysis consisted of a ‘pretreatment x dose 

x session’ mixed ANOVA, with a repeated measure of session, performed on the 

number of active lever responses or infusions in different groups. When 

significant differences were detected, Tukey’s b post-hoc tests were performed to 

compare the number of active lever responses or infusions among different 

groups in each session. When within subject differences were detected, post-hoc 

paired-samples t-tests were used. 

Additionally, for each individual group, lever discrimination was 

determined by ‘lever-type (active or inactive) x session’ mixed ANOVA, with a 

repeated measure of session. When differences were detected, post-hoc paired-

samples t-tests were used to compare active and inactive lever responding for a 
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particular session. Lever discrimination is a key factor used to distinguish 

between reinforcement-contingent behavior and drug-stimulated locomotor 

activation when animals self-administer an agent with stimulant properties (e.g. 

ethanol, cocaine, amphetamine). 

 Persistent Alteration of Posterior Ventral Tegmental Area Dopamine Neurons to 

the Stimulating Effects of Cocaine Following Chronic Ethanol Drinking 

 Animal Preparation 

 

While under isoflurane anesthesia, two guide cannulae (Plastics One Inc.) 

were stereotaxically implanted into the right hemisphere of each subject. One 22-

gauge cannula was aimed 1.0 mm above the pVTA or aVTA for microinjection, 

and one 18-gauge cannula was placed above the ipsilateral AcbSh for 

microdialysis. Both cannulae were placed at a 10° angle to the vertical. 

Coordinates (Paxinos and Watson, 2005) for cannula placements into the pVTA, 

aVTA, and AcbSh were AP -5.7 mm, ML +2.1 mm, DV -8.6 mm; AP -4.8 mm, ML 

+2.1 mm, DV -8.6 mm; and AP +1.7 mm, ML +2.3 mm, DV -5.5 mm, respectively. 

Stylets were placed into both guide cannula when no experiments were being 

conduced. Rats were single-housed following surgery. Following the third 

recovery day, each subject was placed into the microdialysis chamber for 3 h and 

handled for at least 5 min daily. Loop-style dialysis probes (active length 1.5 mm, 

µm, molecular weight cut-off: 13,000 

Dalton, Spectrum Laboratories, Inc, Rancho Dominguez, CA) were constructed 

as previously described (Benveniste and Huttemeier, 1990; Engleman et al. 

2003). Six days after surgery, the animal was placed under anesthesia and the 

loop-style probe was inserted along the rostrocaudal axis into the AcbSh and 

secured with cranioplastic cement as previously described (Kohl et al., 1998). 

Microdialysis probes were inserted 12-24 h before the experiment began. 
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 General Test Condition 

 

As with the ICSA experiments, ethanol access was removed from CE 

animals 4 h before the collection of baseline samples in order to minimize any 

appreciable blood ethanol levels. General dialysis procedures were described 

previously (Engleman et al., 2003; Kohl et al., 1998). Briefly, animals were placed 

into Plexiglas chambers (20x18x15 cm) open at the top and opaque on all but 

one side on the seventh day after surgery. The animals were connected with 20-

gauge polyethylene tubing (PE-20; Becton Dickson & Co., MD) to a syringe 

pump (Harvard Apparatus, Holliston, MA). Microdialysis aCSF was perfused 

through the microdialysis probes at a rate of 1.0 µl/min. After a 80-min washout 

period, four 20-min baseline samples were collected. Then, each rat received 

microinjections of either cocaine (0.25, 0.5, 1.0, or 2.0 mM) or aCSF for 10 min.  

Non-contingent microinjections were accomplished using the EMIT system 

described above. A 28-gauge injection cannula (Plastics One) connected to an 

airtight reservoir was inserted into each animal. The reservoir contained two 

electrodes connected by a spring-coated cable (Plastics One) and swivel (model 

205; Mercotac) to a constant current generator (MNC or A-M Systems).  This 

allowed the animals free movement during experiments. Thirty pulse injections 

were experimentally delivered into the pVTA during the 10-min period. Each 

pulse infused 100-nl bolus of solution over five s followed by a 15-s time-out with 

no infusion. In total, 3.0 ml solution was infused into each animal and the injector 

remained in place for 30 s after infusion to allow pressure equilibration. Six 20-

min samples were collected following the initiation of cocaine microinjections. 

The residence time of the microdialysis probe outlet was 20 min and all analyses 

were adjusted accordingly. All samples were collected into microfuge vials 

containing 5.0 µl of 0.1 normal perchloric acid, frozen immediately in dry ice, and 

stored at -70°C. A previous study indicated no degradation of DA up to one 

month using this procedure (Campbell and McBride, 1995). 
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 Experimental Groups 

 

For all three pretreatment conditions (N, CE, and Ab), animals with 

microinjection cannula aimed at the pVTA were randomly assigned to one of five 

groups (n = 5-7/dose) prior to surgery. Subjects received microinjections of a 

single dose of cocaine (25, 50, 100, or 200 pmol / injection [0.25-2.0 mM]) or 

aCSF. There were 14 total pVTA groups, as there was not a 1.0 mM cocaine 

group for the Ab pretreatment. For the N and CE pretreatments, animals with 

microinjection cannula aimed at the aVTA were randomly assigned to one of 

three groups (n = 3-5/dose). Subjects received microinjections of a single 

concentration of cocaine (0.5 or 2.0 mM) or aCSF. 

 Microdialysis Sample Analysis 

 

DA concentrations were analyzed with a reversed-phase HPLC with 

electrochemical detection as described by Engleman et al. (2006). Briefly, 

samples were loaded into a 10-µl loop and injected into an analytical column 

(BDS Hypersil C18 pioneer, 100 mm X 1 mm, Thermo Fisher Scientific, 

Waltham, MA). The mobile phase (50 mM H3PO4, 0.1 mM EDTA, 0.6mM OSA, 

12.8 mM KCl, 10% v/v methanol, pH 6.0) was delivered by an ESA 582 solvent 

delivery system (Chelmsford, MA). DA was detected by a 3-mm glassy carbon 

microelectrochemical flow cell (VT-03, Antec-Leyden, Palm Bay, FL) and an 

amperometric detector at a potential of +400 mV and a sensitivity set at 100 pA/V 

(Decade II, Antec-Leyden). The outputs from the detector were recorded by a 

chromatography data analysis system (ChromPerfect 4.4.0, Justice Innovations, 

Inc., Palo Alto, CA). The lower limit for DA detection was approximately 0.1 nM. 
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 Statistical Analysis 

 

All data were expressed as mean ± SEM. Microdialysis data were 

normalized and expressed as a percentage of basal values to correct for 

baseline variability. Basal dialysate DA values for each subject were calculated 

as the mean of three determinations prior to the injection of cocaine. Data 

analysis consisted of mixed ANOVAs, with a repeated measure of time, 

performed on the percent baseline DA level. A ‘pretreatment’ one-way ANOVA 

was performed on the average basal levels of extracellular DA. Additionally, the 

values of area under the curve (AUC) for each group were calculated using 

GraphPad Prism 4.0 software (La Jolla, CA) and analyzed with a ‘pretreatment x 

dose’ two-way ANOVA. If significant differences were detected with ANOVAs, 

post-hoc Tukey’s b tests were performed to determine individual differences 

between groups. When within subject differences were detected, post-hoc 

paired-samples t-tests were used. Statistical significance was set at p < 0.05. 
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3. RESULTS 

 Sensitization of Cocaine Reinforcement within the Nucleus Accumbens Shell 

Following Chronic Ethanol Drinking 

 Histology 

 

Figure 2 shows representative placements of injection sites within the 

AcbSh, AcbC, and areas ventral to the AcbSh. Only animals completing all eight 

experimental sessions and with correct placements within one of these sites 

were included for analysis and represent approximately 85% of animals 

undergoing stereotaxic surgery. A total of 122 animals completed the training 

procedure. Ninety rats had placements within the medial portion of the AcbSh, 

while no animals had placements within the ventrolateral AcbSh. As described 

previously, the dorsolateral portion of the AcbSh is more similar to the AcbC than 

to the medial AcbSh in regards to afferent and efferent connectivity, locomotor 

response to locally applied stimulants, and cocaine ICSA (Ikemoto, 2002, 2003, 

2007; Ikemoto et al., 2005). Thirty-two rats had placements outside the AcbSh 

but within the AcbC or regions ventral to the AcbSh. Nine animals from the N 

group (0.5 mM, n = 2; 2.0 mM, n = 4; 8.0 mM, n = 3) and eight animals from the 

CE group (0.5 mM, n = 2; 2.0 mM, n = 3; 4.0 mM, n = 3) had placements within 

regions ventral to the AcbSh. Ten animals from the N group (0.5 mM, n = 4; 4.0 

mM, n = 2; 8.0 mM, n = 4) and five animals from the CE group (0.5 mM, n = 2; 

4.0 mM, n = 3) had placements within the AcbC. 
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Figure 2. Illustration depicts representative, non-overlapping placements of 
injections sites in the forebrain for the self-infusion of cocaine solutions or aCSF 
in P rats. The filled circles represent placements of injection sites within the 
AcbSh. The open circles represent placements of injection sites within the AcbC. 
The open squares represent placements of injection sites ventral to the AcbSh. 

 Ethanol Intake for Chronic Ethanol-drinking Rats 

 

Average daily ethanol intakes for the P rats with chronic continuous 

ethanol-drinking experience (CE) were approximately 5-6 g/kg/d for the first wk 

ethanol consumptions were measured. The final wk before surgery, the average 
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ethanol intake for CE animals was 6.4 ± 0.3 g/kg/d. During the 4-d period 

following surgery, there was a modest decrease in mean ethanol intake (5.6 ± 

0.8 g/kg/d). Ethanol intakes returned to pre-surgery baseline levels and were 

stable at 6.8 ± 0.5 g/kg/d for the 2-d period before ICSA testing began and the 

15-d period of ICSA experiments. Ethanol intakes were in line with previous 

studies using P rats given long-term, concurrent access to water and 15% 

ethanol (Rodd et al., 2005b,c; Rodd-Henricks et al., 2000b). 

 Acquisition of Cocaine Self-infusion: Sessions 1-4  

 

Cocaine concentrations between 0 and 8.0 mM (0-800 pmol / 100 nl) were 

tested to determine the response contingent behaviors of female P rats with (CE) 

or without (N) previous ethanol-drinking experience with injection sites within the 

AcbSh. Condensing the analysis to the average number of infusions received 

during the four acquisition sessions revealed significant main effects of 

pretreatment (F(1,76) = 6.7, p < 0.01) and dose (F(6,76) = 8.9, p < 0.001), but 

not the ‘pretreatment x dose’ interaction (F(1,79) = 1.1, p = 0.39). For N rats, 

there was a significant effect of cocaine dose on the number of self-infusions 

(F(6,37) = 4.7, p < 0.001). Post hoc comparisons (Tukey’s b) indicated the 2.0, 

4.0, and 8.0 mM cocaine groups received significantly more infusions than the 

aCSF and 0.1 mM cocaine groups (p < 0.05; Figure 3). For CE rats, there was a 

significant effect of cocaine dose on the number of self-infusions (F(6,39) = 5.3, p 

< 0.001). Post hoc comparisons (Tukey’s b) indicated animals the 0.5, 1.0, 2.0, 

4.0, or 8.0 mM cocaine groups received significantly more infusions than the 

aCSF and 0.1 mM cocaine groups (p < 0.05). Maintaining a constant cocaine 

dose during analysis allowed for the direct comparison of infusions received 

during acquisition between N and CE animals at each dose of cocaine tested. At 

a concentration of 0.5 mM cocaine, CE rats received significantly more infusions 

than N rats (p < 0.05).  
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Figure 3. Dose-response effects for the acquisition of self-infusion of 0-8.0 mM 
cocaine into the AcbSh of P rats with no ethanol-drinking experience (N) or 
continuous ethanol-drinking experience (CE). Concentration of 0 mM is aCSF 
only. The number of infusions was averaged over Sessions 1-4 for each animal.  
* p < 0.05 (Tukey’s b), significantly greater infusions than ‘N-0’ group; # p < 0.05 
(Tukey’s b), significantly greater infusions than ‘CE-0’ and ‘CE-0.1’ groups;         
+ p < 0.05, significantly greater infusions than the ‘N-0.5’ group. Data are the 
means ± SEM. (n = 6 to 8/dose/pretreatment) 

Overall analysis of the number of self-infusions received across the eight 

sessions revealed significant effects of session (F(7,70) = 22.9, p < 0.001), 

pretreatment (F(1,76) = 19.8, p < 0.001) and dose (F(6,76) = 10.7, p < 0.001), as 

well as significant interaction effects for ‘session x pretreatment’ (F(7,70) = 2.5, p 

< 0.05) and ‘session x dose’ (F(42,450) = 1.9, p < 0.001). Holding pretreatment 

and session constant, the number of infusions was examined for the final 

acquisition session, the three extinction sessions, and the reinstatement session 

(Sessions 4-8). Post hoc analyses were also conducted to compare the number 

of infusions received during each session for each dose of cocaine tested. For N 
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rats, there was a significant effect of cocaine dose for Session 4 (F(6,37) = 3.5, 

both p < 0.01). The 1.0, 2.0, 4.0, and 8.0 mM cocaine groups of N animals 

received more self-infusions than the aCSF group (Tukey’s b, p < 0.05; Figure 4). 

CE rats also displayed a significant effect of cocaine dose for Session 4 (F(6,39) 

= 3.3, p < 0.01). The 0.5, 1.0, 2.0, 4.0 and 8.0 mM cocaine groups of CE animals 

received more self-infusions than the aCSF group (p < 0.05; Figure 5). 

 

 

Figure 4. Dose-response effects for the extinction and reinstatement of self-
infusion of 0.1-8.0 mM cocaine or aCSF into the AcbSh of P rats with no ethanol-
drinking experience (N). * p < 0.05 (Tukey’s b), significantly greater infusions 
than ‘N-aCSF’ group for the same session; - p < 0.05, significantly fewer 
infusions than Session 4 for same dose of cocaine; + p < 0.05, significantly 
greater infusions than Session 7 for same dose of cocaine; @ p < 0.05, 
significantly greater infusions than ‘N-aCSF’ group for the same session and than 
Session 7 for same dose of cocaine; # p < 0.05, significantly greater infusions 
than ‘N-aCSF’ group for the same session and than Sessions 4 and 7 for same 
dose of cocaine. Data are the means ± SEM. (n = 6 to 8/dose/pretreatment) 
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Figure 5. Dose-response effects for the extinction and reinstatement of self-
infusion of 0.1-8.0 mM cocaine or aCSF into the AcbSh of P rats with continuous 
ethanol-drinking experience (CE). * p < 0.05 (Tukey’s b), significantly greater 
infusions than ‘CE-aCSF’ group for the same session; # p < 0.05, significantly 
greater infusions than ‘CE-aCSF’ group for the same session and than Sessions 
4 and 7 for same dose of cocaine. Data are the means ± SEM. (n = 6 to 
8/dose/pretreatment) 

 Extinction of Cocaine Self-infusion: Sessions 5-7  

 

When aCSF was substituted for cocaine during Sessions 5-7, there was 

not a significant effect of initial cocaine dose on the number of infusions received 

by N animals for any Session 5-7 (all F(6,37) < 2.1, all p-values > 0.08). 

However, N animals given 0.1, 0.5, 1.0, or 2.0 mM cocaine did not receive 

significantly fewer infusions during any extinction session compared to Session 4 

(all p-values > 0.05; Figure 4). On the other hand, N animals initially self-infusing 

4.0 or 8.0 mM cocaine received significantly fewer infusions during each of the 
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three extinction sessions compared to Session 4 (all p-values < 0.05). The 

substitution of aCSF for cocaine produced a different effect on self-infusion for 

CE animals compared to their N counterparts. 

During Sessions 5 and 6, CE animals displayed a significant effect of 

initial cocaine dose on self-infusions (both F(6,39) > 3.9, both p-values < 0.01). 

During both Sessions 5 and 6, the 2.0 and 4.0 mM groups received more self-

infusions than the aCSF group (p < 0.05; Figure 5). During Session 7, there was 

not a significant effect of dose on the number of infusions received (F(6,39) = 0.9, 

p= 0.50). In contrast from the N groups, no CE groups received significantly 

fewer infusions during any of the three extinction sessions compared to Session 

4 at any cocaine dose tested (all p-values > 0.05; Figure 5). 

 Reinstatement of Cocaine Self-infusion: Session 8  

 

When access to cocaine self-infusion was restored during Session 8, the 

1.0, 2.0, 4.0, and 8.0 mM cocaine groups of N animals received a greater 

number of infusions compared to Session 7 (all p-values < 0.05; Figure 4). The 

0.5, 1.0, 2.0, and 4.0 mM cocaine groups of CE animals received a greater 

number of infusions during Session 8 compared to Session 7 (all p-values < 0.05; 

Figure 5). To clarify, reinstatement in this case is defined as the return of the 

availability of reinforce following a period of unavailability (Flaherty, 1985). This is 

a distinct concept from ‘reinstatement of responding’, the animal model of drug-

induced seeking (Shaham et al., 2003). 

Analysis revealed significant main effects of pretreatment (F(1,76) = 20.1, 

p < 0.001) and dose (F(6,76) = 6.0, p < 0.001), as well as the ‘pretreatment x 

dose’ interaction (F(1,76) = 2.4, p < 0.05). For N rats, there was a significant 

effect of cocaine dose on the number of self-infusions (F(6,37) = 5.1, p < 0.001). 

Post hoc comparisons (Tukey’s b) for reinstatement indicated the 1.0, 2.0, 4.0, 

and 8.0 mM cocaine groups of N animals received more infusions than the aCSF 

group (p < 0.05; Figures 4 & 6). Additionally, the 2.0 and 4.0 mM cocaine 
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received more infusions than the 0.5 mM cocaine group (p < 0.05). For CE rats, 

there was a significant effect of cocaine dose on the number of self-infusions 

(F(6,39) = 4.1, p < 0.005). Post hoc comparisons (Tukey’s b) indicated the 0.5, 

1.0, 2.0, or 4.0 mM cocaine groups of CE animals received more infusions than 

the aCSF group (p < 0.05; Figures 5 & 6). Comparison of infusions received by N 

and CE rats during Session 8 revealed CE rats received significantly more 

infusions than N rats at concentrations of 0.5, 1.0, 2.0 and 4.0 mM cocaine (all p-

values < 0.05; Figure 6). 

 

 

Figure 6. Dose-response effects for the reinstatement of self-infusion of 0-8.0 
mM cocaine into the AcbSh of P rats with no ethanol-drinking experience (N) or 
continuous ethanol-drinking experience (CE). Concentration of 0 mM is aCSF 
only. The number of infusions was obtained from Session 8 for each animal.        
* p < 0.05 (Tukey’s b), significantly greater infusions than ‘N-0’ group; @ p < 0.05 
(Tukey’s b), significantly greater infusions than ‘CE-0’ group; + p < 0.05, 
significantly greater infusions compared to the N group with the same cocaine 
dose. Data are the means ± SEM. (n = 6 to 8/dose/pretreatment) 
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Figure 7. Comparison of infusions of 0-8.0 mM cocaine into the AcbSh between 
Session 8 () and Session 4 () for P rats with no ethanol-drinking experience 
(N) or continuous ethanol-drinking experience (CE). Concentration of 0 mM is 
aCSF only. * p < 0.05, significantly greater infusions for Session 8 compared to 
Session 4 for the same pretreatment condition and cocaine dose; @ p < 0.05, 
significantly greater infusions for Session 8 compared to Session 4 for the same 
pretreatment condition and cocaine dose and compared to the corresponding N 
group. Data are the means ± SEM. (n = 6 to 8 /dose/pretreatment) 
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Figure 8. Representative infusion pattern for P rats with no ethanol-drinking 
experience (N) or continuous ethanol-drinking experience (CE) self-administering 
either 0.5 or 2.0 mM cocaine or aCSF into the AcbSh or AcbC. Each line 
represents one infusion. The first row of traces represents the initial test session. 
The second row of traces represents the final session of acquisition (Session 4). 
The third row of traces represents the final session of extinction (Session 7). The 
fourth row of traces represents reinstatement (Session 8). (n = 6 to 8 
/dose/pretreatment) 
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Comparison of the number of self-infusions received during Session 8 

compared to Session 4 (Figure 7) revealed significant effects of session (F(1,76) 

= 39.7, p < 0.001), pretreatment (F(1,76) = 18.4, p < 0.001), and dose (F(6,76) = 

7.6, p < 0.001), as well as significant interactions for ‘session x pretreatment’ 

(F(1,76) = 7.6, p < 0.01) and ‘session x dose’ (F(6,76) = 2.3, p < 0.05). For N 

rats, the 2.0 and 4.0 mM cocaine groups received a significantly greater number 

of infusions during Session 8 compared to Session 4 (p < 0.05). For CE rats, the 

0.5, 1.0, 2.0, and 4.0 mM cocaine groups received a significantly greater number 

of infusions during Session 8 compared to Session 4 (1.0 and 2.0 mM: p < 0.005; 

0.5 and 4.0 mM: p < 0.05). 

 Lever Responding of Ethanol-naïve Rats 

 

Overall analysis of the number of active lever responses across all eight 

sessions (Figures 9-11) revealed significant main effects of session (F(7,70) = 

22.3, p < 0.001), pretreatment (F(1,80) = 20.0, p < 0.001) and dose (F(6,80) = 

12.1, p < 0.001), as well as a significant interaction effect for ‘session x 

pretreatment’ (F(7,70) = 3.4, p < 0.005).  

For rats with no ethanol-drinking experience (N), were significant main 

effects of session (F(7,31) = 11.1, p < 0.001) and dose (F(6,37) = 6.3, p < 0.001), 

as well as a significant ‘session x dose’ interaction (F(42,216) = 1.6, p < 0.05). 

For the ‘session x dose’ interaction, individual ANOVAs were performed for each 

session to determine the dose effect. Analysis revealed a significant effect of 

dose during each of the initial four sessions (acquisition; all F(6,37) > 2.6, all p-

values < 0.03). During Session 1, the 1.0 and 2.0 mM cocaine groups responded 

more on the active lever than the aCSF and 0.1 mM cocaine groups (p < 0.05, 

Tukey’s b). During Session 2, the 2.0, 4.0, and 8.0 mM cocaine groups 

responded more on the active lever than the aCSF group, and the 2.0 mM group 

responded more on the active lever than the 0.1 and 0.5 mM cocaine groups (p < 

0.05, Tukey’s b). During Sessions 3 and 4, the 1.0, 2.0, 4.0, and 8.0 mM cocaine 
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groups responded more on the active lever than the aCSF group and the 0.1 and 

0.5 mM cocaine groups (p < 0.05, Tukey’s b). 

 

 

Figure 9. Responses on the active and inactive levers for the self-infusion of 0.1 
mM cocaine or aCSF into the AcbSh of P rats with no ethanol-drinking 
experience (N) or continuous ethanol-drinking experience (CE) for four 
acquisition sessions, three extinction sessions, and one reinstatement session.   
# p < 0.05, significantly greater active lever responses during Session 8 
compared to inactive lever responses for Session 8 and compared to active lever 
responses for Sessions 4 and 7; + p < 0.05, significantly greater active lever 
responses for CE rats compared to active lever responses for N rats at the same 
cocaine dose during the same session. Data are the means ± SEM. (n = 6 to 8 
/dose/pretreatment) 

During the first session of extinction (Session 5) there was no significant 

effect of dose on the level of active lever responding (F(6,37) = 2.0, p = 0.08). 

However, there was a significant effect of dose on active lever responding during 

Sessions 6 and 7 (both F(6,37 > 4.4, p < 0.005). Post hoc analysis (Tukey’s b) 

revealed only the 1.0 mM cocaine group responded more on the active lever 

compared to the aCSF group during Session 6 or 7 (Figures 9 and 10; p <0.05). 
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The aCSF group and the 0.1, 0.5, and 1.0 mM cocaine groups did not display 

significantly different levels of active lever responding during Session 5, 6, or 7 

compared to Session 4 (all p-values > 0.24). The 2.0 mM cocaine group 

displayed reduced active lever responding during Session 6 (but not Session 5 or 

7) compared to Session 4 (p < 0.05). The 4.0 and 8.0 mM cocaine groups 

displayed reduced active lever responding during Sessions 5, 6, and 7 compared 

to Session 4 (all p-values < 0.05).  

When cocaine access for N rats was reinstated during Session 8, there 

was a significant effect of dose on the level of active lever responding (F(6,37) = 

4.0, p < 0.005). The 1.0, 2.0, 4.0, and 8.0 mM cocaine groups responded more 

on the active lever than the aCSF group and the 0.1 and 0.5 mM cocaine groups 

(p < 0.05, Tukey’s b). However, none of the seven N groups responded more on 

the active lever during Session 8 compared to Session 4 (Figures 9-11; all p-

values > 0.20). Additionally, the number of active lever responses during Session 

8 compared to Session 7 was significantly greater the 2.0, 4.0, and 8.0 mM 

cocaine groups (all p-values < 0.04), but not for the aCSF group and the 0.1, 0.5, 

and 1.0 mM cocaine groups (all p-values > 0.06).  

For N rats, the aCSF group and the 0.1 and 0.5 mM cocaine groups did 

not show significant effects of lever-type (all F-values < 2.1, all p-values > 0.20) 

or ‘lever-type x session’ interaction (all F-values < 1.4, all p-values > 0.24) on 

lever responding (Figures 9 and 10). The 2.0, 4.0, and 8.0 mM cocaine groups 

displayed significant effects of both lever-type (all F-values > 13.3, all p-values < 

0.02, Figure 11) and ‘lever-type x session’ interaction (all F-values > 3.2, all p-

values < 0.01). During Sessions 2, 3, 4, and 8, the 2.0, 4.0, and 8.0 mM cocaine 

groups responded significantly more on the active lever than the inactive lever 

(all p-values < 0.04; Figure 11). The 1.0 mM cocaine group showed a marginally 

significant effect on lever responding of lever-type (F(1,6) = 4.7, p = 0.07), but not 

of a ‘lever-type x session’ interaction (F(7,42) = 0.9, p = 0.49). Further analysis 

revealed significantly greater active versus inactive lever responding for the 1.0 

mM cocaine group only during Session 8 (p < 0.05, Figure 10). 
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Figure 10. Responses on the active and inactive levers for the self-infusion of 0.5 
or 1.0 mM cocaine into the AcbSh of P rats with no ethanol-drinking experience 
(N) or continuous ethanol-drinking experience (CE) for four acquisition sessions, 
three extinction sessions, and one reinstatement session. * p < 0.05, significantly 
greater active lever responses compared to inactive lever responses for the 
same session; - p < 0.05, significantly fewer active lever responses during a 
particular extinction session compared to active lever responses during Session 
4; # p < 0.05, significantly greater active lever responses during Session 8 
compared to inactive lever responses for Session 8 and compared to active lever 
responses for Sessions 4 and 7; + p < 0.05, significantly greater active lever 
responses for CE rats compared to active lever responses for N rats at the same 
cocaine dose. Data are the means ± SEM. (n = 6 to 8 /dose/pretreatment) 
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Figure 11. Responses on the active and inactive levers for the self-infusion of 
2.0, 4.0 or 8.0 mM cocaine into the AcbSh of P rats with no ethanol-drinking 
experience (N) or continuous ethanol-drinking experience (CE) for four 
acquisition sessions, three extinction sessions, and one reinstatement session.   
* p < 0.05, significantly greater active lever responses compared to inactive lever 
responses for the same session; - p < 0.05, significantly fewer active lever 
responses during a particular extinction session compared to active lever 
responses during Session 4; ^ p < 0.05, significantly greater active lever 
responses during Session 8 compared to inactive lever responses for Session 8 
and compared to active lever responses for Session 7; # p < 0.05, significantly 
greater active lever responses during Session 8 compared to inactive lever 
responses for Session 8 and compared to active lever responses for Sessions 4 
and 7; + p < 0.05, significantly greater active lever responses for CE rats 
compared to active lever responses for N rats at the same cocaine dose. Data 
are the means ± SEM. (n = 6 to 8 /dose/pretreatment) 
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 Lever Responding of Ethanol-drinking Rats  

 

For rats with continuous ethanol-drinking experience (CE), there were 

significant main effects of session (F(7,33) = 15.9, p < 0.001) and dose (F(6,39) = 

7.1, p < 0.001), and a significant ‘session x dose’ interaction (F(42,228) = 1.5, p < 

0.05). For the ‘session x dose’ interaction, individual ANOVAs were performed for 

each session to determine the dose effect. Analysis revealed a significant effect 

of dose during Sessions 1-4 (all F(6,39) > 2.6, all p-values < 0.03). During 

Session 1, only the 4.0 mM cocaine group responded more on the active lever 

than the aCSF group (p < 0.05, Tukey’s b). During Session 2, the 1.0, 2.0, 4.0, 

and 8.0 mM cocaine groups responded more on the active lever than the aCSF 

group (p < 0.05, Tukey’s b). During Sessions 3 and 4, the 0.5, 1.0, 2.0, 4.0, and 

8.0 mM cocaine groups responded more on the active lever than the aCSF 

group, and 4.0 mM group responded more on the active lever than the 0.1 mM 

cocaine group (p < 0.05, Tukey’s b). 

During Sessions 5 and 6, there was a significant effect of cocaine dose on 

the level of active lever responding (both F(6,39) > 4.6, both p-values  < 0.005). 

During both Sessions 5 and 6, the 2.0 and 4.0 mM cocaine groups responded 

more on the active lever than aCSF group and the 0.1 mM cocaine group (p < 

0.05, Tukey’s b; Figures 9 and 11). On the other hand, there was not a significant 

effect of cocaine dose on the level of active lever responding during Session 7 

(F(6,39) = 2.0, p = 0.09). The aCSF and 0.1 mM cocaine groups did not have 

significantly different levels of active lever responding during Session 5, 6, or 7 

compared to Session 4 (all p-values > 0.18). The 0.5, 1.0, and 8.0 mM cocaine 

groups showed reduced active lever responding during at least two of Sessions 

5-7 compared to Session 4 (all p-values < 0.05; Figures 10 and 11). On the other 

hand, the 2.0 and 4.0 mM cocaine groups did not show reduced active lever 

responding during Session 5, 6, or 7 compared to Session 4 (all p-values > 0.08). 

When cocaine access for CE animals was reinstated during Session 8, 

there was a significant effect of dose on the level of active lever responding 
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(F(6,39) = 5.2, p < 0.001). The 0.1, 0.5, 1.0, 2.0, 4.0, and 8.0 mM cocaine groups 

responded more on the active lever than the aCSF group (p < 0.05, Tukey’s b). 

The 0.1, 0.5, 1.0, 2.0, and 4.0 mM cocaine groups the responded more on the 

active lever during Session 8 compared to both Sessions 4 and 7 (all p-values < 

0.04; Figures 11 and 12). The 8.0 mM cocaine group, however, did not respond 

more on the active lever during Session 8 compared to either Session 4 or 7 

(both p-values > 0.08). 

For CE rats, the aCSF group did not did not show significant effects of 

lever-type (F(1,5) = 0.1, p = 0.90) or ‘lever-type x session’ interaction (F(7,35) = 

0.6, p = 0.75) on lever responding (Figure 9). The 0.5, 1.0, 2.0, 4.0, and 8.0 mM 

cocaine groups displayed significant effects of both lever-type (all F-values > 

12.1, all p-values < 0.02) and ‘lever-type x session’ interaction (all F-values > 2.8, 

all p-values < 0.02). During Sessions 2, 3, 4, and 8, the 0.5, 1.0, 2.0, and 4.0 mM 

cocaine groups responded more on the active lever than the inactive lever (all p-

values < 0.04; Figures 10 and 11). The 8.0 mM cocaine group responded more 

on the active lever than the inactive lever during Sessions 2, 4, and 8 (all p-

values < 0.03). The 0.1 mM cocaine group showed marginally significant effects 

on lever responding of lever-type (F(1,6) = 5.0, p = 0.06) and of a ‘lever-type x 

session’ interaction (F(7,42) = 2.1, p = 0.06). Further analysis revealed 

significantly greater active versus inactive lever responding for the 0.1 mM 

cocaine group only during Session 8 (p < 0.05, Figure 10). 

A comparison of active lever responding between N and CE animals 

during each session at each dose of cocaine revealed significant differences 

during acquisition and reinstatement. During Sessions 3 and 4, the 0.5 and 1.0 

mM cocaine groups of CE animals responded more on the active lever compared 

to N animals receiving the same dose (all p-values < 0.03; Figure 10). 

Additionally, the 0.5 mM cocaine group of CE animals responded more during 

Session 2 on the active lever compared to N animals given the same dose (p < 

0.05). During Session 8, the 0.1, 0.5, 1.0, 2.0, and 4.0 mM cocaine groups of CE 
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animals responded more on the active lever compared to N animals receiving the 

same dose (all p-values < 0.05; Figures 10 and 11). 

 Infusions and Lever Responding of Anatomical Controls  

 

Animals with cannula implanted in the AcbC or ventral to the AcbSh self-

administering 0.5-8.0 mM cocaine received a comparable number of infusions 

during Sessions 1-4 as those administering aCSF or 0.1 mM cocaine into the 

AcbSh (Figure 12).  Analyzing the average number of infusions received by the 

32 anatomical control animals during the four acquisition sessions revealed no 

significant main effects or interactions for site, pretreatment, or dose (all F-values 

< 2.5, all p-values > 0.13). Collapsing the data across dose, the average number 

of infusions received for the first four sessions were 6.1 ± 0.9 and 5.6 ± 1.2 for N 

animals and 10.8 ± 1.9 and 5.8 ± 0.8 for CE animals with placements within the 

AcbC or ventral to the AcbSh, respectively. Overall, cannula placements 

surrounding the AcbSh did not support the acquisition of cocaine self-infusion at 

any of the doses tested for either pretreatment condition. 

AcbC and ventral groups self-administering 0.5-8.0 mM cocaine received 

a comparable number of infusions during Session 8 as those administering aCSF 

or 0.1 mM cocaine into the AcbSh (Figure 12).  Analyzing the average number of 

infusions received by the 32 anatomical control animals during Session 8 

revealed no significant main effects or interactions for site, pretreatment, or dose 

(all F-values < 3.3, all p-values > 0.07). The average number of infusions 

received for the Session 8 was 17.6 ± 4.9 and 12.1 ± 2.3 for N animals and 16.8 

± 2.6 and 16.8 ± 4.9 for CE animals with placements within the AcbC or ventral to 

the AcbSh, respectively.  
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Figure 12. Dose-response effects for the acquisition and reinstatement of self-
infusion of 0.5-8.0 mM cocaine into the AcbC or regions ventral to the AcbSh of P 
rats with no ethanol-drinking experience (N) or continuous ethanol-drinking 
experience (CE). Concentration of 0 mM is aCSF only. For acquisition, the 
number of infusions was averaged over Sessions 1-4 for each animal. For 
reinstatement, the number of infusions was obtained from Session 8 for each 
animal. Data was collapsed across dose into groups with placements within the 
AcbC or ventral to the AcbSh. Infusion data for rats given 0.1 nM cocaine or 
aCSF into the AcbSh is presented for comparison. Data are the means ± SEM. 
(n = 5 to 10/pretreatment for AcbC or ventral to AcbSh) 

Analyzing the number of active lever responses by the control animals 

across the eight sessions revealed a significant effect of session (F(7,15 = 5.7, p 

< 0.005) but no other significant main effects or interactions for site, 

pretreatment, or dose (all F-values < 1.4, all p-values > 0.12). Anatomical control 
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animals performed a comparable number of active lever responses for each 

session as those administering aCSF into the AcbSh (Figure 13). Comparison of 

active and inactive lever responding revealed no significant main effects or 

interactions of lever-type, session, or dose for each of the four groups (N or CE 

animals with placements within the AcbC or the region ventral to the AcbSh; all 

F-values < 3.3, all p-values > 0.07). 

 

 

Figure 13. Responses on the active and inactive levers for the self-infusion of 
0.5-8.0 mM cocaine into the AcbC or regions ventral to the AcbSh of P rats with 
no ethanol-drinking experience (N) or continuous ethanol-drinking experience 
(CE) for four acquisition sessions, three extinction sessions, and one 
reinstatement session. Lever responses of rats self-infusing aCSF into the AcbSh 
are presented for comparison. Data are the means ± SEM. (n = 5 to 
10/pretreatment for AcbC or ventral to AcbSh) 
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 Persistent Alteration of Posterior Ventral Tegmental Area Dopamine Neurons to 

the Stimulating Effects of Cocaine Following Chronic Ethanol Drinking 

 Histology 

 

Figure 14 shows representative placements of microinjection sites and 

microdialysis probes, respectively. The primary analysis included animals with 

verified placements within both the pVTA and AcbSh. The pVTA was defined as 

the VTA region at the level of the interpeduncular nucleus, coronal sections at 

5.3 to 6.1 posterior to bregma. The aVTA was defined as the VTA region at the 

level of the mammillary body, coronal sections at 4.8 to 5.2 posterior to bregma. 

Microinjection sites outside of the VTA included neuroanatomical controls within 

adjacent regions: dorsomedial (rostral linear nucleus of the raphe), dorsolateral 

(red nucleus), ventrolateral (medial lemniscus and SN), and ventromedial 

(interpeduncular nucleus). Probe placements with at least 75% of active 

membrane area located within the AcbSh sub-region were classified as AcbSh. A 

number of probe placements spanned portions of the AcbC, OT, or VP. Animals 

with placements within both the pVTA or aVTA and AcbSh represented 

approximately 75% of rats undergoing stereotaxic surgery. A total of 149 animals 

completed the microinjection-microdialysis protocols with sufficient dialysate 

volumes for analysis. Groups with probe placements within the AcbSh and 

microinjection placements within the pVTA, aVTA, or outside the VTA were 

composed of 82, 25, and 36 animals, respectively. There were an additional six 

animals with injection placements within the pVTA and probe placements with at 

least 30% membrane area within the dorsal striatum. 
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Figure 14. Illustration depicts representative, non-overlapping placements of 
microdialysis probes in the forebrain (left) and microinjections sites in the 
midbrain (right) of P rats. The lines represent the 1.5mm length of microdialysis 
probes in the AcbSh. The filled circles represent placements of injection sites 
within the pVTA. The open circles represent placements of injection sites within 
the aVTA. The open squares represent placements of injection sites in regions 
adjacent to the VTA. 
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 Ethanol Intake for Ethanol-drinking and Ethanol-abstinent Rats 

 

Average daily ethanol intakes for the P rats with continuous ethanol-

drinking experience (CE) were approximately 5-6 g/kg/d for the first wk ethanol 

consumptions were measured. The final wk before surgery, the average ethanol 

intake for CE animals was 6.6 ± 0.5 g/kg/d. During the 4-d period following 

surgery, there was a modest decrease in mean ethanol intake (5.7 ± 0.7 g/kg/d). 

Ethanol intakes returned to pre-surgery baseline levels for the 2-d period before 

microinjection-microdialysis experiments. Average daily ethanol intakes for the P 

rats with continuous ethanol-drinking experience followed by a period of 

abstinence (Ab) were approximately 5-6 g/kg/d for the first wk ethanol 

consumption was measured. The final wk before abstinence, the average ethanol 

intake for Ab animals was 6.3 ± 0.4 g/kg/d. Ethanol intakes were in line with 

previous studies using P rats given long-term, concurrent access to water and 

15% ethanol (Rodd et al., 2005b,c; Rodd-Henricks et al., 2000b). 

 Temporal Pattern of the Stimulating Effects of Cocaine on Posterior Ventral 

Tegmental Area Dopamine Neurons 

 

There was no significant difference in the basal extracellular DA levels in 

the AcbSh of animals resulting from drinking experience  (F(2,79) = 1.4, p = 

0.25). Basal DA levels were 1.15 ± 0.06 nM, 1.11 ± 0.06 nM, and 1.01 ± 0.07 nM 

for N, CE, and Ab animals, respectively. These levels are within the range of Acb 

basal extracellular DA levels previously reported for P rats using traditional 

microdialysis (Ding et al., 2009a; Engleman et al., 2000; Melendez et al., 2002). 

The reported values are not corrected for in vivo probe recovery, and definitive 

differences between groups in extracellular DA levels could not be determined 

without conducting quantitative (e.g. zero-net-flux) microdialysis experiments.  

Analysis of percent baseline DA levels revealed significant main effects of 

time (F(7,62) = 17.1, p < 0.001), pretreatment (F(2,68) = 4.7, p < 0.05), and dose 
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(F(4,68) = 51.8, p < 0.001). Significant interaction effects for ‘pretreatment x 

dose’ F(7,68) = 35.3, p < 0.001), ‘time x pretreatment’ (F(14,126) = 2.2, p < 0.01), 

‘time x dose’ interaction (F(28,260) = 4.2, p < 0.001), and ‘time x pretreatment x 

dose’ (F(49,476) = 3.2, p < 0.001) were also found. 

 

 

Figure 15. Time course of extracellular DA levels in the AcbSh of P rats before 
and after the microinjection of aCSF into the pVTA. N: no ethanol-drinking 
experience; CE: continuous ethanol-drinking experience; Ab: chronic ethanol-
drinking experience followed by abstinence. Data are the means ± SEM. 
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 Nucleus Accumbens Shell Dopaminergic Response After Injection of Artificial 

Cerebrospinal Fluid or 0.25 mM Cocaine into the Posterior Ventral Tegmental 

Area 

 

Figure 15 shows injection of aCSF into the pVTA did not significantly alter 

baseline levels of extracellular DA regardless of pretreatment. Injection of 0.25 

mM cocaine into the pVTA of N, CE, or Ab rats increased extracellular DA levels 

within the AcbSh with a relative magnitude as follows: Ab > CE > N (Figure 16). 

For N animals, DA levels were not elevated to a significant extent (peak = 131 ± 

14% of baseline, all p > 0.06). For CE animals, DA levels gradually increased 

within 20 min after cocaine injection (127 ± 11% of baseline), reached peak 

levels 20 min later (201 ± 28%, p < 0.05), then gradually returned to baseline 

levels at 100 min after cocaine injection. For Ab animals, DA levels sharply 

increased within 20 min after cocaine injection (195 ± 13% of baseline, p < 

0.005), reached a peak 20 min later (232 ± 11%, p < 0.001), then gradually 

returned to baseline levels at 100 min after cocaine injection.  

At 20 min after 0.25 mM cocaine injection, DA levels were significantly 

greater (F(2,14) = 8.7, p < 0.005) for Ab animals compared to both N and CE 

animals (p < 0.005; Figure 16). DA levels were significantly greater (F(2,14) = 

11.3, p < 0.005) for CE and Ab animals compared to N animals at 40 min post-

injection (p < 0.01). At 60 min after injection, DA levels were significantly different 

between all groups (F(2,14) = 13.1, p < 0.001). DA levels at 60 min post-injection 

were greater for Ab animals compared to both CE and N animals (p < 0.05) and 

greater for CE animals compared to N animals (p < 0.05). At 80 min after 

injection, DA levels were significantly greater (F(2,14) = 4.5, p < 0.05) for Ab 

animals compared to N animals (p < 0.05). 
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 Nucleus Accumbens Shell Dopaminergic Response After Injection of 0.5 mM 

Cocaine into the Posterior Ventral Tegmental Area 

 

Figure 17 represents the effects of 0.5 mM cocaine injection into the pVTA 

on extracellular DA levels in the AcbSh of N, CE, or Ab animals. Injection of 0.5 

mM cocaine into the pVTA increased DA levels within the AcbSh for N and (to a 

greater extent) CE animals. Conversely, injection of 0.5 mM cocaine into the 

pVTA of Ab animals did not produce a significant change in DA levels within the 

AcbSh. For N animals, DA levels gradually increased within 20 min after cocaine 

injection (119 ± 6% of baseline), reached peak levels 20 min later (168 ± 10%, p 

< 0.005), then gradually returned to baseline levels at 80 min after cocaine 

injection. For CE animals, DA levels sharply increased to a peak within 20 min 

after cocaine injection (324 ± 51% of baseline, p < 0.01) and then gradually 

returned to baseline levels at 80 min after injection. For Ab animals, DA levels 

immediately decreased 20 min after cocaine injection (79% ± 7 of baseline, n.s. p 

> 0.05) and then gradually returned to baseline levels at 80 min after injection.  

At 20 min after 0.5 mM cocaine injection, DA levels were significantly 

greater (F(2,15) = 19.8, p < 0.001) for CE animals compared to both N and Ab 

animals (p < 0.001; Figure 17). DA levels were significantly different between all 

groups (F(2,15) = 16.9, p < 0.001) 40 min after injection. DA levels at 40 min 

post-injection were greater for CE animals compared to both N and Ab animals 

(p < 0.05) and greater for N animals compared to Ab animals (p < 0.05). At 60 

min after injection, DA levels were significantly greater (F(2,15) = 9.8, p < 0.005) 

for CE and N animals compared to Ab animals (p < 0.05). At 100 min post-

injection, DA levels were significantly greater (F(2,15) = 4.7, p < 0.05) for N 

animals compared to CE and Ab animals (p < 0.05). 
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Figure 16. Time course of extracellular DA levels in the AcbSh of P rats before 
and after the microinjection of 0.25 mM cocaine into the pVTA. N: no ethanol-
drinking experience; CE: continuous ethanol-drinking experience; Ab: chronic 
ethanol-drinking experience followed by abstinence. + p < 0.05, significantly 
greater than baseline levels; # p < 0.05 (Tukey’s b), significantly greater than all 
other groups; * p < 0.05 (Tukey’s b), significantly greater than the ‘N-0.25’ group. 
Data are the means ± SEM. 
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Figure 17. Time course of extracellular DA levels in the AcbSh of P rats before 
and after the microinjection of 0.5 mM cocaine into the pVTA. N: no ethanol-
drinking experience; CE: continuous ethanol-drinking experience; Ab: chronic 
ethanol-drinking experience followed by abstinence. + p < 0.05, significantly 
different from baseline levels; # p < 0.05 (Tukey’s b), significantly greater than all 
other groups; * p < 0.05 (Tukey’s b), significantly greater than ‘Ab-0.5’ group. 
Data are the means ± SEM. 
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 Nucleus Accumbens Shell Dopaminergic Response After Injection of 1.0 mM 

Cocaine into the Posterior Ventral Tegmental Area 

 

For the concentration of 1.0 mM cocaine, data was obtained from N and 

CE animals, but not for Ab animals (Figure 18). Injection of 1.0 mM cocaine into 

the pVTA increased DA levels within the AcbSh of N animals. On the other hand, 

injection of 1.0 mM cocaine into the pVTA of CE animals decreased AcbSh DA 

levels. For N animals, DA levels increased within 20 min after cocaine injection 

(144 ± 10% of baseline, p < 0.01), reached peak levels 20 min later (164 ± 7%, p 

< 0.001), then gradually returned to baseline levels at 80 min after cocaine 

injection. For CE animals, DA levels decreased 20 min after cocaine injection (69 

± 5% of baseline, p < 0.01), reached a minimum level 20 min later (56 ± 4%, p < 

0.001), then gradually returned to baseline levels at 100 min after injection. At 20, 

40, and 60 min after cocaine injection, DA levels were significantly greater for N 

compared to Ab animals (all t-values > 4.2, p-values < 0.005). 

Nucleus Accumbens Shell Dopaminergic Response After Injection of 2.0 mM 

Cocaine into the Posterior Ventral Tegmental Area 

 

Figure 19 represents the effects of 2.0 mM cocaine injection into the pVTA 

on extracellular DA levels in the AcbSh of N, CE, or Ab animals. Injection of 2.0 

mM cocaine into the pVTA increased DA levels within the AcbSh in N animals. In 

contrast, injection of 2.0 mM cocaine into the pVTA of CE or Ab animals reduced 

AcbSh DA levels. For N animals, DA immediately increased to peak levels 20 

min after cocaine injection (161 ± 11% of baseline, p < 0.05) and quickly returned 

to baseline levels 20 min later. For CE animals, DA levels decreased 20 min after 

cocaine injection (75 ± 4% of baseline, p < 0.01) and remained at this level 

throughout 100 min post-injection. While still depressed, DA levels for CE 

animals were not significantly different from baseline at 80 or 100 min after 

cocaine injection (both p-values > 0.07). For Ab animals, DA levels decreased 20 
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min after cocaine injection (76 ± 4%, p < 0.05), reached a minimum level 20 min 

later (6% ± 6%, p < 0.01), then gradually returned to baseline levels at 100 min 

after injection. 

At both 20 min (F(2,17) = 46.4, p < 0.001) and 40 min (F(2,17) = 12.0, p < 

0.001) after 2.0 mM cocaine injection, DA levels were significantly greater for N 

animals compared to both CE and Ab animals (both p-values < 0.005). DA levels 

remained significantly greater for N animals compared to both CE and Ab 

animals (p < 0.05) at 60 min (F(2,17) = 5.8, p < 0.05) after cocaine injection. In 

addition to the time-course analysis, post-injection peak dopaminergic response 

and total AUC were analyzed to succinctly demonstrate the dose-response 

effects of cocaine microinjection in N, CE, and Ab animals. 
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Figure 18. Time course of extracellular DA levels in the AcbSh of P rats before 
and after the microinjection of 1.0 mM cocaine into the pVTA. N: no ethanol-
drinking experience; CE continuous ethanol-drinking experience. + p < 0.05, 
significantly different from baseline levels; # p < 0.05, significantly greater than 
‘CE-1.0’ group. Data are the means ± SEM. 
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Figure 19. Time course of extracellular DA levels in the AcbSh of P rats before 
and after the microinjection of 2.0 mM cocaine into the pVTA. N: no ethanol-
drinking experience; CE: continuous ethanol-drinking experience; Ab: chronic 
ethanol-drinking experience followed by abstinence. + p < 0.05, significantly 
different from baseline levels; # p < 0.05 (Tukey’s b), significantly greater than all 
other groups. Data are the means ± SEM. 
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 Comparison of Maximal Dopaminergic Response 

 

The maximum or minimum peak dopaminergic response compared to 

baseline for each animal was determined. The maximal values were used for 

animals with a net increase in dopaminergic response and minimal values were 

for animals with a net decrease in dopaminergic response. Analysis of the peak 

post-injection percent baseline DA levels revealed significant effects of 

pretreatment (F(2,68) = 10.5, p < 0.001) and dose (F(4,68) = 29.8, p < 0.001) 

along with a ‘pretreatment x dose’ interaction (F(7,68) = 25.6, p < 0.001). 

For N animals, pVTA injection of 0.5 or 1.0 mM cocaine produced greater 

peak AcbSh DA levels compared to injection of 0.25 mM cocaine or aCSF (p< 

0.05). Injection of 2.0 mM cocaine resulted in greater peak DA levels compared 

to injection of aCSF (p< 0.05). For CE animals, injection of 0.25 or 0.5 mM 

cocaine resulted in a significant dose-dependent increase in peak DA levels 

compared to injection of 1.0 or 2.0 mM cocaine or aCSF (p < 0.01). For Ab 

animals, injection of 0.25 mM cocaine resulted in greater peak DA levels 

compared to injection of 0.5 or 2.0 mM cocaine or aCSF (p < 0.001). 

There was no significant effect of pretreatment condition on the peak 

AcbSh DA levels of animals injected with aCSF (F(2,13) = 0.3, p = 0.75). 

Injection of 0.25 mM cocaine resulted in greater peak DA levels in CE and Ab 

animals compared to N animals (p < 0.05). Injection of 0.5 mM cocaine resulted 

in a significant ‘pretreatment’-dependent differences in peak DA levels with CE > 

N > Ab (p < 0.01). Injection of 1.0 mM cocaine produced greater peak DA levels 

for N animals compared to CE animals (p < 0.001). Lastly, injection of 2.0 mM 

cocaine resulted in greater peak DA levels for N animals compared to CE or Ab 

animals (p > 0.001). While comparison of peak DA levels is a useful measure, 

AUC analysis provides a summation of both the magnitude and the shape across 

time of the post-injection dopaminergic response. 
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 Comparison of Area Under the Time-response Curve 

 

Figure 20 represents the AUC values from each group. Briefly, these 

values were calculated as the sum of individual areas (determined via the 

trapezoidal method) between each data point for each individual animal. Analysis 

of the AUC values revealed significant main effects of pretreatment (F(2,68) = 

4.8, p < 0.05) and dose (F(4,68) = 55.2, p < 0.001), as well as a significant effect 

of the ‘pretreatment x dose’ interaction (F(7,68) = 40.1, p < 0.001). For N 

animals, injection of 0.5 or 1.0 mM cocaine into the pVTA resulted in significantly 

greater increases in AUC values compared to injection of 0.25 or 2.0 mM cocaine 

or aCSF (p< 0.05). For CE animals, injection of 0.25 or 0.5 mM cocaine resulted 

in a significant dose-dependent increase in AUC values compared to aCSF 

injection (p < 0.005). On the other hand, injection of 1.0 or 2.0 mM cocaine for 

CE animals resulted in a significant reduction in AUC values compared to 

injection of 0.25 or 0.5 mM cocaine or aCSF (p < 0.05). For Ab animals, injection 

of 0.25 mM cocaine resulted in a significantly greater AUC value compared to 

injection of 0.5 or 2.0 mM cocaine or aCSF (p < 0.001). Conversely, injection of 

2.0 mM cocaine for Ab animals resulted in a significantly smaller AUC value 

compared to aCSF injection (p < 0.01).  

There were no significant differences in AUC values across pretreatment 

of animals injected with aCSF (F(2,13) = 0.2, p = 0.82). Injection of 0.25 mM 

cocaine resulted in a significant ‘pretreatment’-dependent increase of AUC 

values with Ab > CE > N (p < 0.005). Injection of 0.5 mM cocaine resulted in a 

significant ‘pretreatment’-dependent differences of AUC values with CE > N > Ab 

(p < 0.005). Injection of 1.0 mM cocaine resulted in a significantly greater AUC 

value for N animals compared to CE animals (p < 0.001). Lastly, injection of 2.0 

mM cocaine resulted in a significantly greater AUC value for N animals compared 

to CE or Ab animals (p > 0.001). 
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Figure 20. Area under the curve (AUC) analysis for the dose-response effect of 
microinjection of 0-2.0 mM cocaine into the pVTA on DA in the AcbSh following: 
no ethanol-drinking experience (N), continuous ethanol-drinking experience (CE), 
or chronic ethanol-drinking experience followed by a period of protracted 
abstinence (Ab). * p < 0.05 (Tukey’s b), significantly different from aCSF group 
with the same pretreatment. # p < 0.05 (Tukey’s b), significantly greater than ‘N-
0.5’ and ‘N-2.0’ groups. @ p < 0.05 (Tukey’s b), significantly different than all 
other cocaine doses within the same pretreatment. + p < 0.05 (Tukey’s b), 
significant difference between N and CE groups at the same dose of cocaine.   
++ p < 0.05 (Tukey’s b), significant difference between CE and Ab groups at the 
same dose of cocaine. +++ p < 0.05 (Tukey’s b), significant difference between N 
and Ab groups at the same dose of cocaine. Data are the means ± SEM. 
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Figure 21. Time course of extracellular DA levels in the AcbSh of P rats before 
and after the microinjection of 0.5, 1.0, or 2.0 mM cocaine or aCSF into the 
aVTA. N: no ethanol-drinking experience; CE: chronic ethanol-drinking 
experience. Data are the means ± SEM. 

 Nucleus Accumbens Shell Dopaminergic Response After Injection of Cocaine 

into the Anterior Ventral Tegmental Area or Regions Adjacent to the Ventral 

Tegmental Area 

 

Figure 21 represents the effects of microinjections of 0.5 or 2.0 mM 

cocaine or aCSF into the aVTA on extracellular DA levels in the AcbSh of N or 

CE animals, respectively. There were no significant differences in the basal 

extracellular DA levels in the AcbSh resulting from drinking experience  (t(23) = 
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0.7, p = 0.50). Basal DA levels were 1.09 ± 0.09 nM and 1.18 ± 0.08 nM for N 

and CE groups, respectively. There were no significant effects of pretreatment, 

time, dose, or any interaction terms (all F-values < 1.4, all p-values > 0.28).  

Figure 22 represents the effects of 0.25-2.0 mM cocaine or aCSF into 

areas adjacent to the VTA. These injection sites included placements within the 

red nucleus, rostral linear nucleus, interpeduncular nucleus, medial lemniscus, or 

SN. Analysis revealed no significant effects of pretreatment, time, injection site, 

dose, or any interaction terms (all F-values < 2.0, all p-values > 0.16). As such, 

data was collapsed across injection site and dose. There were also six animals 

with injector placements within the pVTA and at least 30% of the microdialysis 

probe area within the dorsal striatum. Basal extracellular DA levels within the 

dorsal striatum for these animals were 4.63 ± 0.45 nM and no significant changes 

in DA levels were observed after cocaine microinjection (F(7,14) = 0.4, p = 0.64). 

 

 

Figure 22. Time course of extracellular DA levels in the AcbSh of P rats before 
and after the microinjection of 0.5, 1.0, or 2.0 mM cocaine or aCSF into areas 
adjacent to the VTA. N: no ethanol-drinking experience; CE: continuous ethanol-
drinking experience; Ab: chronic ethanol-drinking experience followed by a period 
of protracted abstinence. Data are the means ± SEM. 
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4. DISCUSSION 

 Sensitization of Cocaine Reinforcement within the Nucleus Accumbens Shell 

Following Chronic Ethanol Drinking 

   

The results of the experiment indicate: (1) adult P rats initiated and 

maintained the self-infusion of cocaine into the AcbSh, but not the AcbC (Figures 

3 and 12); and (2) voluntarily consumption of significant amounts of ethanol 

under continuous conditions, compared to water access only, reduced the 

threshold dose for self-infusion of cocaine and produced greater increases in 

responding for cocaine after a drug-free period (Figures 3, 6, 10, and 11). The 

results confirm the AcbSh as a critical brain site mediating the initiation of 

cocaine reinforcement and support the hypothesis that chronic continuous 

ethanol-drinking experience increases the sensitivity of the AcbSh to the 

reinforcing effects of cocaine. 

 Cocaine Reinforcement within the Nucleus Accumbens Shell 

 

 The present study is in agreement with previous research finding both 

outbred Wistar and selectively-bred P rats, as well as mice, will self-administer 

physiologically relevant concentrations of cocaine into the AcbSh, but not the 

AcbC (David et al., 2001; Katner et al., 2011; McKinzie et al., 1999; Rodd-

Henricks et al., 2002a). Ethanol-naïve P rats reliably self-infused concentrations 

of 2.0, 4.0, and 8.0 mM cocaine (200-800 pmol / infusion) into the AcbSh, but did 

not self-infuse cocaine at any concentration into the AcbC (Figures 3, 6, 12). P 

rats in the current study reliably self-infused cocaine into the AcbSh at the same 
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range of concentrations (2.0-8.0 mM) as previous experiments with P rats self-

infusing cocaine into the AcbSh (Katner et al., 2011). Neither the current study 

nor Katner et al. (2011) examined the descending limb of the dose-response 

curve (> 8.0 mM cocaine) for the self-infusion of cocaine into the AcbSh of P rats. 

However, the self-infusion of cocaine into the AcbSh or pVTA of Wistar rats 

(Rodd-Henricks et al., 2002a; Rodd et al., 2005a) exhibited an inverted-U-shaped 

dose-response curve.  

Doses supporting self-infusion in the current study correspond well with 

the amount of locally delivered cocaine required to increase DA and serotonin 

levels within the Acb, elicit locomotor activation, or produce a CPP (Andrews and 

Lucki, 2001; Delfs et al., 1990; Filip and Siwanowicz, 2001; Ikemoto, 2002; 

Teneud et al., 1996). The discrimination of the active from the inactive lever 

during Sessions 1-4 and Session 8 suggests the self-infusion of 2.0-8.0 mM 

cocaine into the AcbSh is not the result of an increase in general locomotor 

activity (Figure 11; Ikemoto and Wise, 2004). Lever discrimination is relevant 

because microinjection of cocaine or mixtures of D1 and D2 receptor agonists into 

the AcbSh, but not AcbC, elicited significant locomotion and rearing (Choi et al., 

2000; Filip and Siwanowicz, 2001; Ikemoto, 2002). Additionally, sodium channel 

inhibition did not play a significant role in cocaine’s neurochemical or reinforcing 

effects within the AcbSh (Hernandez et al., 1991; Ikemoto, 2003).  

Lack of reliable cocaine self-infusion into the AcbC or areas ventral to the 

AcbSh (see Figures 12 and 13) confirms the findings of Rodd-Henricks et al. 

(2002a). Anatomical controls are critical for mapping the boundaries of a drug’s 

local site of action. Concerns of anatomical specificity arise due to the unknown 

extent of drug diffusion away from the injection site and the tendency for drug 

efflux up the cannula shaft due to differential pressure (Ikemoto and Wise, 2004; 

Wise and Hoffman, 1992). Previous studies using the same or a similar drug-

delivery system as the current experiments show a similar neuroanatomical 

specificity (AcbSh but not AcbC) for other drugs of abuse (Engleman et al., 2009, 

Hoebel et al., 1983; Ikemoto et al., 2005; Olds, 1982; Rodd et al., 2003b). 
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Diffusion away from injection site did not appear to contribute to the observed 

self-infusion behaviors in the current experiment, given the use of small injection 

volumes and the range of cocaine concentrations tested. The functional 

properties of DAT differ between the AcbSh and AcbC, corresponding to the 

increased sensitivity to the effects of psychostimulants of the AcbSh compared to 

the AcbC (David et al., 1998). The AcbSh, but not the AcbC, contained potential 

sites on the DAT for functional interactions between DA and norepinephrine 

(Nirenberg et al., 1997). The AcbSh also exhibited more transient DA release 

relative to the AcbC, associated with less efficient DA uptake in this subregion 

(Jones et al., 1996).  

The direct effects of cocaine within the Acb are likely mediated via its 

actions as a non-specific monoamine reuptake inhibitor (Reith et al., 1986; Ritz et 

al., 1987), as local application produced significant increases in DA, serotonin, 

and norepinephrine (Andrews and Lucki, 2001; Hernandez et al., 1991; Li et al., 

1996; Teneud et al., 1996). Cocaine-evoked increases serotonin and 

norepinephrine also potentially modulate the effects of DA within the Acb (Filip et 

al., 2005; Li et al., 1996; Smith and Aston-Jones, 2008), and serotonin can act 

locally to increase DA release (Campbell and McBride, 1995; Chen et al., 1991; 

Parsons and Justice, 1993; White, 1990). Cocaine’s ability to increase DA levels 

in the Acb results in the activation of local D1 and D2 receptors. The cooperative 

activation of D1 and D2 receptors in the Acb (Clark and White, 1987) appears to 

be essential in the reinforcing actions of stimulants within the Acb (Ikemoto et al., 

1997a), as well as cocaine sensitization (Henry et al., 1998). 

Another significant finding from the current study is the increased level of 

active lever responding and self-infusions of N rats at ‘optimal concentrations’ 

after cocaine access was restored in Session 8. N rats obtained more infusions 

of 2.0 or 4.0 mM cocaine during Session 8 compared to the final session before 

extinction (Session 4; Figure 7). Furthermore, rats self-infusing a marginally 

reinforcing concentration (1.0 mM) did not display lever discrimination during the 

initial four sessions, but produced clear lever discrimination and a significant 
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number of self-infusions during Session 8 (Figures 6 and 10). Previous ICSA 

studies with ethanol-naïve P rats found robust increases in active lever 

responding and infusions after previous access to either ethanol or cocaine was 

restored (Katner et al., 2011; Rodd et al., 2004a, 2005b,c). Moreover, P rats 

receiving ethanol access for seven consecutive sessions did not show this effect 

by the final session (Rodd et al., 2005d), suggesting potentiated responding 

resulted from neuronal alterations within the AcbSh or afferent and efferent 

connections occurring during the drug-free period. A number of molecular, 

neurochemical, and behavioral adaptations appear to contribute to the 

sensitization of cocaine reinforcement and locomotor response (Nestler, 2001; 

Self, 2004; Wolf, 2010). For example, rats exhibited increased breakpoints for 

cocaine IVSA only after 10 d of discrete trial self-administration followed by 7 d of 

deprivation, but not with continuous access to cocaine or shorter periods of 

deprivation (Morgan and Roberts, 2004). On the other hand, the observed effects 

could reflect tolerance to cocaine’s neurochemical effects within the Acb. Rats 

were potentially compensating for lower basal levels of DA in the Acb by self-

infusing greater amounts of cocaine, as 1-2 wk of contingent or non-contingent 

cocaine injections produced transient decreases in basal Acb DA levels 3-10 d 

after the final exposure (Meil et al., 1995; Rossetti et al., 1992).   

Genetic factors potentially meditated the increased responding for cocaine 

during Session 8, as outbred Wistar rats generally do not show increased active 

lever responding and self-infusions after ethanol or cocaine access is restored 

(Rodd et al., 2004a,b; Rodd-Henricks et al., 2002a, 2003). Supporting this idea, 

animals with high novelty seeking and sensitivity to drugs of abuse (HR) showed 

an ‘up-ward’ shift of the dose-response curve of IVSA cocaine compared to low 

novelty-seeking (LR) animals which was associated with an increased maximal 

response to cocaine (Piazza et al., 2000). Rats selectively bred for alcohol 

preference, compared to alcohol-non-preferring and outbred rat strains, 

displayed an increased sensitivity to the reinforcing and neurochemical effects of 

cocaine (Honkanen et al., 1999; Katner et al., 2011; Le et al., 2006; Leggio et al., 
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2003; Marttila et al., 2007; Mikkola et al., 2001; 2002). Thus, selective breeding 

for alcohol preference potentially produced a phenotype associated with a more 

general preference for drugs of abuse. Alcohol-preferring rats are innately 

different from non-preferring and outbred rat strains when examining basal 

neurotransmitter levels, receptor expression, and pharmacological 

responsiveness in limbic brain regions (Bell et al., 2006a; McBride and Li, 1998; 

Murphy et al., 2002). 

 Effects of Continuous Ethanol Experience 

 

Following continuous, ethanol-drinking experience, P rats displayed an 

increased sensitivity to the reinforcing effects of cocaine within the AcbSh relative 

to their ethanol-naïve counterparts. The observation of leftward shift in the dose-

response curve for active lever responding and infusions during the acquisition of 

cocaine ICSA under a FR1 schedule supports this concept. The results of this 

study are congruent with previous work finding P rats with the same protocol of 

chronic continuous ethanol drinking displayed an increased sensitivity to the 

reinforcing effects of ethanol within the pVTA (Rodd et al., 2005b,c). CE animals 

reliably self-infusing a concentration of cocaine (0.5 mM) not self-infused by N 

animals (Figures 3 and 10), also supports the interpretation of an increased 

sensitivity to cocaine’s reinforcing effects. Lastly, CE reliably self-infused 1.0 mM 

cocaine, whereas this concentration was only marginally reinforcing for N 

animals (Figure 3).  

The enhanced sensitivity of the AcbSh to the reinforcing effects of cocaine 

in CE rats compared to N rats was not likely a result of the presence of 

appreciable ethanol levels within the brain or plasma, as access to the 15% 

ethanol solution was removed 4 h before the beginning of each ICSA session. 

Adult P rats receiving unlimited free-choice access to 10% ethanol drank 5-8 

g/kg/d and showed peak blood ethanol levels of 60-120 mg% during the dark 

cycle, with an average content of 55 mg% at the end of the dark cycle (Bell et al., 
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2006b; Murphy et al., 1986). Four h after the removal of ethanol access, 

increased peripheral and central ethanol levels resulting from consumption 

should have diminished to negligible levels (Engleman et al., 2008; Robinson et 

al., 2000; Yim et al., 2000). Indeed, removal of ethanol bottles 3 h before the 

beginning of microdialysis produced no detectable levels of ethanol within the 

VTA extracellular milieu during the first baseline sample (Engleman et al., 2011). 

On the other hand, P rats potentially underwent acute withdrawal and were 

responding for lower concentrations of cocaine and self-administering more 

infusions to partially counteract the local withdrawal effects. This is unlikely 

though, as CE rats in the current study displayed higher overall levels of infusion 

only during reinstatement and not during acquisition. Nevertheless, P rats given 6 

wk of unlimited access to 10% ethanol voluntarily consumed more than 5 g/kg/d 

and displayed signs of physical dependence (Kampov-Polevoy et al., 2000), but 

more robust signs of withdrawal was not observed until after 20 wk of ethanol 

drinking (Waller et al., 1982). Additionally, animals were habituated to the 

removal of ethanol access 4 h before the ICSA experimental session, preventing 

or attenuating withdrawal symptoms by eliminating the unexpected removal of 

ethanol access. 

Similar to the current study, outbred Wistar rats with high ethanol intakes 

were more sensitive to cocaine-induced locomotion and CPP than rats with low 

ethanol intake (Stromberg and Mackler, 2005). Mice receiving 7 d of repeated 

ethanol injections displayed a CPP for cocaine associated with enhanced 

synaptic plasticity of NMDA receptors on VTA DA neurons (Bernier et al., 2011). 

Furthermore, high levels of operant lever responding for oral ethanol predicted a 

more rapid acquisition of lever responding for IVSA cocaine compared to lower 

levels of ethanol responding (Mierzejewski et al., 2003). Repeated systemic 

ethanol treatments produced an enhanced locomotor response to a subsequent 

injection of cocaine, which was associated with a long-term enhancement of 

evoked DA and ACh release in the Acb (Nestby et al., 1997) and an increased 

number of striatal DAT binding sites (Itzhak and Martin, 1999). Additionally, local 
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application of cocaine produced a greater increase in Acb DA levels for animals 

with ethanol-drinking experience compared to naïve controls (Yoshimoto et al., 

2000). Chronic ethanol exposure also abolished the subsequent conditioned 

taste aversion to cocaine seen in ethanol-naïve animals, suggesting ethanol 

exposure may reduce the aversive effects of subsequent cocaine exposure 

(Kunin et al., 1999; Grakalic and Riley, 2002).  

Another important finding is the observation of more pronounced 

differences in active lever responding and self-infusions of CE rats compared to 

N rats after cocaine access was restored in Session 8. In the current study, CE 

rats responded more on the active lever for and obtained more infusions of 0.5, 

1.0, 2.0, or 4.0 mM cocaine during Session 8 compared N rats and compared to 

Session 4 (Figures 7, 10, 11). Previous studies observed similar effects of 

ethanol-drinking experience on subsequent ethanol self-infusion into the pVTA of 

P rats (Rodd et al., 2005b,c). The increased rates of responding and infusion 

during Session 8 in CE rats may be due to a tolerance and not a sensitization to 

the reinforcing effects of cocaine, requiring animals to infuse more cocaine to 

obtain the same effect. This is unlikely, as a decrease in the threshold 

concentration for self-infusion during acquisition and reinstatement accompanied 

the ‘up-ward’ shift seen during Session 8. Similar to (Rodd et al., 2005c), self-

administration of the highest drug concentration did not produce higher levels of 

active lever responding or infusions during Session 8 for CE rats relative to the 

ethanol-naïve counterparts. This finding suggests against a ‘right-shift’ in the 

curve associated with rate tolerance (Zernig et al., 2004). CE rats displayed 

larger increases in active lever responding and infusions during Session 8 

compared to N controls. Thus, chronic ethanol drinking exacerbated the effects a 

drug-free period on cocaine reinforcement, potentially related to a further 

dysregulation of neurotransmitter release, uptake, and postsynaptic action. 

During sessions where aCSF was substituted for cocaine (Sessions 5-7), 

the 2.0 mM group of N rats and the 2.0 and 4.0 mM groups of CE rats displayed 

a diminished extinction of responding for cocaine relative to the other groups 
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(Figures 10 and 11). During Sessions 5 and 7, N rats originally receiving 2.0 mM 

cocaine increased responding on the inactive lever (Figure 11). Rats initially self-

infusing an ‘optimal’ concentration of ethanol (125-150 mg%) also increased 

inactive lever responding during the first extinction session (Rodd et al., 2004a,b; 

2005b,c). The higher inactive lever responding during extinction may reflect 

enhanced cocaine-seeking behavior resulting from a concentration of 2.0 mM 

producing the highest level of conditioned cue reactivity. In the current study, as 

with a number of other ICSA experiments, a cue light above the active lever was 

illuminated during all of the sessions, regardless of drug availability. Indeed, 

discriminative stimuli predicting IVSA cocaine access are particularly resistant to 

extinction and can induce lever responding even after extended periods of 

abstinence (Weiss et al., 2001). 

Putative mechanisms mediating the increased sensitivity of the AcbSh to 

the reinforcing effects of cocaine produced by long-term ethanol exposure are 

unknown, but research suggests a role for alterations in the function of 

monoamine transporters and a number of neurotransmitter receptors. For 

example, long-term (e.g. at least 8 wk) continuous free-access ethanol drinking 

by animals selectively bred for high ethanol consumption produced a general up-

regulation in basal and evoked dopaminergic neurotransmission within the Acb. 

This was indicated by: increased basal DA levels (Thielen et al., 2004), 

decreased D2 autoreceptor function (Engleman et al., 2003), accelerated basal 

DA uptake (Carroll et al., 2006), and increased responsiveness to DAT-inhibited 

DA increases (Engleman et al., 2000), without alterations in the number of DA 

terminals (Zhou et al., 2006). The most evident substrate for changes in cocaine 

reinforcement within the AcbSh is the DAT. While cocaine binds to NET, SERT, 

and DAT (Ravna et al., 2009; Reith et al., 1986; Ritz et al., 1990), the potency for 

cocaine reinforcement is most strongly correlated with the affinity at the DAT 

(Ritz et al., 1987). On the other hand, studies with genetic knockout animals 

suggest both SERT and DAT play an important role in cocaine reinforcement 

(Filip et al., 2005; Hall et al., 2004; Sora et al., 2001; but see Chen et al., 2006).  
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Because kinetic and binding experiments were not performed in the 

current study, it is unclear if the potential up-regulation of cocaine-mediated DAT 

inhibition after ethanol exposure would result from an increased number of DAT 

binding sites for cocaine, an increased efficacy of cocaine to inhibit DAT, or an 

increased affinity of DAT for cocaine. For example, the up-regulation of Acb DA 

uptake inhibition by a selective DAT inhibitor after ethanol drinking (Engleman et 

al., 2000) is associated with a down-regulation of Acb D2 autoreceptors, but not 

an increased level of DA clearance under basal conditions (Engleman et al., 

2003; Thielen et al., 2004). Changes in DA uptake are likely a compensatory 

response to increased dopaminergic signaling as repeated ethanol exposure 

produces the accumulation of DA in the extracellular area (Grace, 2000; Thielen 

et al., 2004), and acute ethanol did not alter DA uptake in the Acb (Budygin et al., 

2001; Jones et al., 2006). On the other hand, physiologically relevant 

concentrations of ethanol directly affected DAT function (Mayfield et al., 2001; 

Zahniser et al., 1999). Changes in DA uptake also potentially resulted from 

alterations in presynaptic D2 autoreceptor function, however the specific 

mechanisms remain unclear (Mayfield and Zahniser, 2001; Schmitz et al., 2002). 

Increases in cocaine reinforcement could also be promoted by an ethanol-

induced enhanced sensitivity of postsynaptic D1 receptors and subsensitivity of 

presynaptic D2 autoreceptors within the AcbSh. Chronic ethanol drinking (free 

access or liquid diet) by outbred rats produced an up-regulation of Acb D1 

receptors (Bailey et al., 2001; May, 1992). However, both studies showed no 

alterations in the number of D1 receptor binding sites, analogous to findings with 

chronic stimulant treatment (White and Kalivas, 1998). In addition to the in vivo 

microdialysis experiments using alcohol-preferring rats (Engleman et al., 2003; 

Thielen et al., 2004), binding studies using outbred rats also found evidence of 

D2 receptor down-regulation within the Acb (Rommelspacher et al., 1992; 

Syvalahti et al., 1988). Moreover, human alcoholics displayed reduced D2 binding 

in a number of brain regions (Volkow et al., 1996). Chronic ethanol drinking by 

inbred P rats produced intakes of 10 g/kg/d resulting in increased D1 and D2 
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receptor density within rostral regions of the AcbSh and AcbC (Sari et al., 2006). 

Because D2 receptors are located both pre- and postsynaptically within the Acb 

(Pickel et al., 2006; Sesack et al., 1994), in vitro changes are difficult to interpret. 

 Lastly, ethanol-induced changes in AcbSh cocaine reinforcement may have 

resulted from an up-regulation of local D3 receptors. Long-term (1 y) continuous 

ethanol drinking by both P and HAD rats produced increased striatal expression 

of D3 receptors (Vengeliene et al., 2006), while D3 receptor blockade within the 

AcbSh attenuated cocaine sensitization (Ramiro-Fuentes and Fernandez-Espejo, 

2010).  

The observed changes in cocaine reinforcement within the AcbSh are 

potentially partially mediated by an up-regulation of SERT function and down-

regulation of 5-HT3 receptor function within the AcbSh. Cocaine shows a higher 

affinity for SERT than DAT (Matecka et al., 1996; Ritz and Kuhar, 1989; Ritz et 

al., 1990) and is more potent at SERT- compared to DAT- and NET-inhibition 

within the Acb (Uchimura and North, 1990). Serotonin acts within the Acb at 5-

HT3 receptors to release DA locally (Campbell and McBride, 1995; Chen et al., 

1991; Parsons and Justice, 1993; but see Campbell et al., 1995; Li et al., 1996). 

Ethanol positively modulates 5-HT3 receptor function (Lovinger, 1999; Lovinger 

and Zhou, 1998; Sung et al., 2000), while cocaine binds to the 5-HT3 receptor to 

inhibit ion conductance (Breitinger et al., 2001; Carta et al., 2003). The induction 

of cocaine sensitization resulted in a down-regulation of 5-HT3 receptor 

immunoreactivity within the AcbSh, but not the AcbC (Ricci et al., 2004). 

Systemic injections of a 5-HT3 receptor antagonist attenuated cocaine-induced 

CPP, locomotor activity, and Acb DA release (Kankaanpaa et al., 2002). Chronic 

ethanol treatment increased SERT mRNA within the Acb (Shibasaki et al., 2010), 

while P rats with chronic ethanol-drinking experience attenuated increases in Acb 

DA levels evoked by local 5-HT3 receptor activation (Thielen et al., 2004; but see 

Yoshimoto et al., 1996). 

Overall, the present results confirm the AcbSh as an important brain 

region mediating the acquisition of cocaine reinforcement and support the 
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hypothesis that a prolonged period of ethanol drinking increases the sensitivity to 

the reinforcing effects of cocaine within the AcbSh. Chronic ethanol drinking 

putatively produces neuronal alterations within the terminal region of 

mesoaccumbens brain circuitry, rendering an individual more sensitive to the 

reinforcing effects of cocaine and thus more susceptible to acquiring cocaine 

self-administration.  

 Persistent Alteration of Posterior Ventral Tegmental Area Dopamine Neurons to 

the Stimulating Effects of Cocaine Following Chronic Ethanol Drinking 

 

The results of the experiment indicate: (1) administration of cocaine into 

the pVTA, but not the aVTA, increased extracellular DA levels in the AcbSh of 

adult P rats (Figures 16-19 and 21); (2) voluntarily consumption of ethanol under 

continuous conditions, compared to water access only, reduced the threshold 

dose of cocaine needed to increase DA levels, produced greater DA release at a 

moderate dose of cocaine, and resulted in decreased DA levels at high doses of 

cocaine (Figures 16-20); and (3) the altered response of pVTA DA neurons to 

cocaine was further augmented 30 d after termination of ethanol drinking 

(Figures 16-20). These results demonstrate a local activating effect of cocaine on 

pVTA DA neurons and support the hypothesis that chronic continuous ethanol-

drinking experience induces persistent alterations in the sensitivity of pVTA DA 

neurons to the stimulating actions of cocaine. 

 Stimulating Effects of Cocaine on Posterior Ventral Tegmental Area Dopamine 

Neurons 

 

The present study appears to be the first demonstrating transient 

increases in extracellular levels of DA within the AcbSh following pulsed 

microinjections of cocaine directly into the pVTA, at doses supporting local self-
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administration (Rodd et al., 2005a). Injections of 0.5 or 1.0 mM (1.5 nmol or 3.0 

nmol total) cocaine into the pVTA produced robust increases in AcbSh DA levels 

(160-170% baseline), while injections of 0.25 or 2.0 mM (0.75 nmol or 6.0 nmol) 

cocaine produced smaller and more transient increases in DA levels (130-160% 

baseline). The current results confirm previous research finding outbred Wistar 

rats reliably self-administered 0.5-2.0 mM, but not 0.25 or 4.0 mM, cocaine into 

the pVTA (Rodd et al., 2005a). Animals received 30 microinjections of cocaine 

over a 10-min period, however DA levels remained elevated for 20-60 minutes. A 

peripheral injection of a high dose of cocaine (15 mg/kg) has been shown to 

produce a similar time course and maximal effect in Acb DA levels (Kalivas and 

Duffy, 1991, 1993). The ICSA of cocaine into the pVTA of P rats has not yet been 

examined, but the lack of significant DA-stimulating effect at 2.0 mM potentially 

resulted from P rats having a relatively greater sensitivity to cocaine within the 

pVTA compared to Wistar rats (e.g. leftward-shift in the dose-response curve). 

Supporting this, P rats were more sensitive to the reinforcing effects of cocaine or 

ethanol within the AcbSh and ethanol within the pVTA (Engleman et al., 2009; 

Katner et al., 2011; Rodd et al., 2004a). Concentrations greater than 2.0 mM 

were not examined in the current study, and it remains unclear if higher doses 

would produce decreases in Acb DA. This effect is plausible, given the putative 

mechanisms of cocaine within the VTA and the effects of pVTA cocaine following 

chronic continuous ethanol drinking.  

Other experiments with intra-VTA infusion of cocaine also support the 

current findings regarding the stimulating effect of cocaine on pVTA neurons. For 

example, mice learned to self-infuse 0.6 or 3.0 mM cocaine into the pVTA (David 

et al., 2004). Moreover, daily bilateral intra-pVTA injections of 5-nmol cocaine for 

4 d produced behavioral sensitization to a systemic cocaine challenge (Cornish 

and Kalivas, 2001). On the other hand, Initial in vivo studies suggested local 

effects of cocaine within the VTA partially and transiently inhibited most, but not 

all, DA neurons (Einhorn et al., 1988). However, these results were likely 
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complicated by chloral hydrate anesthesia inhibiting GABA neuronal activity (Lee 

et al., 2001; Steffensen et al., 2008).  

In contrast to the pVTA, microinjections of cocaine into the aVTA did not 

alter DA levels in the AcbSh at any dose tested (Figure 21). Moreover, injections 

of cocaine into areas adjacent to the VTA also failed to alter DA levels in the 

AcbSh (Figure 22). Thus, the observed effects after microinjection of cocaine into 

pVTA were not due to diffusion of cocaine into the aVTA or areas surrounding 

the VTA. Also supporting this finding, cocaine is not self-administered into the 

aVTA (Rodd et al., 2005a). Regional differences within the VTA with regard to 

afferent innervation, synaptic connectivity, and relative receptor location and 

function appear to produce the functionally heterogeneous effects. Activation of 

GABAA receptors in the aVTA, but not the pVTA, increased the reinforcing effects 

of IVSA cocaine on a progressive ratio (PR) schedule (Lee et al., 2007). DA 

neurons within the pVTA, relative to the aVTA, are under greater D2-mediated 

tonic inhibition while DA neurons within the aVTA appeared to be under greater 

GABAA-mediated tonic inhibition (Ding et al., 2009b). Lastly, receptors for ORX 

exist on DA neurons in the pVTA projecting to the medial PFC and AcbSh, but 

not on neurons in the aVTA innervating the AcbC (Vittoz et al., 2008).  

The mechanisms through which microinjections of cocaine into the pVTA 

produce increases in extracellular DA within the AcbSh are not completely clear, 

but a number of recent studies elucidated putative substrates. Cocaine’s actions 

as a non-specific monoamine reuptake inhibitor (Reith et al., 1986) likely mediate 

the direct effects of cocaine within the pVTA. Local application of cocaine 

produced significant increases in VTA DA, serotonin, and norepinephrine (Chen 

and Reith, 1994a,b). On the other hand, increased VTA DA neuronal activity due 

to direct interaction between cocaine and 5-HT3 or nicotinic ACh receptors on DA 

neurons is unlikely, as cocaine binding inhibited conductance of these ion 

channels (Breitinger et al., 2001; Carta et al., 2003; Hess et al., 2000; Ulrich et 

al., 1998). At concentrations equivalent to the current study, cocaine showed a 

higher affinity for SERT than DAT and was more potent inhibiting serotonin 
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versus DA uptake (Matecka et al., 1996; Ritz et al., 1990; Uchimura and North, 

1990). Cocaine-induced increases in VTA serotonin levels activated 5-HT2A 

receptors (McMahon and Cunningham, 2001) located on VTA DA neurons 

(Doherty and Pickel, 2000) to increase DA neuronal firing (Pessia et al., 1994; 

Prisco et al., 1994). Cocaine acted indirectly through serotonin to: activate 5-

HT1B receptors (O’Dell and Parsons, 2004) located presynaptically on GABA 

terminals (Sari et al., 1999), decrease GABA release (Johnson and North, 1992), 

reduce GABA-B-receptor-evoked inhibitory postsynaptic potentials in DA neurons 

(Cameron and Williams, 1994), and ultimately increase DA neuronal firing (Guan 

and McBride, 1989; Yan and Yan, 2001). 

The indirect mechanisms by which acutely administered cocaine into the 

pVTA produced transient increases in AcbSh DA may also include glutamatergic 

and noradrenergic influences. Cocaine-induced increases in VTA DA levels 

activate presynaptic D1 receptors to increase local glutamate levels (Kalivas and 

Duffy, 1995). Furthermore, the application of cocaine to VTA DA neurons 

increased the magnitude of NMDA excitatory postsynaptic currents (Schilstrom et 

al., 2006), which leads to increase VTA DA neuron burst firing (Canavier and 

Landry, 2006). Supporting this idea, selective NMDA blockade within the VTA 

eliminated both the tonic and phasic cocaine-induced DA increases within the 

AcbSh (Aragona et al., 2008; Sombers et al., 2009). Cocaine-induced increases 

in VTA norepinephrine increased DA neuronal excitability (Grenhoff et al., 1995) 

via actions at alpha-1 adrenergic receptors located on a subset of VTA DA 

neurons (Bayer and Picker, 1990). At higher doses of cocaine, significant binding 

to DAT produces increased levels of DA in the VTA, leading to DA neuronal 

inhibition. In this case, DA neurons are inhibited by activation of D2 autoreceptors 

located on DA perikarya and dendrites to directly inhibit DA firing (White and 

Wang, 1984). At much higher concentrations, cocaine reduced tonic inhibition of 

pVTA DA neurons by acting presynaptically to block voltage-sensitive sodium ion 

channels on local GABA neurons (Steffensen et al., 2008). However, the doses 

of cocaine used in the current experiment correspond to concentrations much 
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lower than concentrations used in Steffensen et al. (2008). The relative 

contribution of afferent inputs, including the magnitude and temporal pattern of 

direct and indirect feedback/feedforward loops from the Acb to the VTA (Sesack 

and Grace, 2010; Xia et al., 2011), also affected the profile of AcbSh DA after 

pVTA cocaine injection.  

 Effects of Continuous Ethanol Experience 

 

Following continuous, free-choice ethanol-drinking experience, P rats 

displayed an augmentation in the sensitivity of pVTA DA neurons to the 

stimulating actions of cocaine relative to their ethanol-naïve counterparts. 

Chronic ethanol-drinking experience reduced the threshold dose of cocaine 

needed to increase DA levels, produced greater DA release at a moderate dose 

of cocaine, and resulted in decreased DA levels at high doses of cocaine. 

Generally, the data represent a leftward shift in the dose-response curve (Figure 

20), although DA neuronal inhibition at concentrations higher than 2.0 mM 

cocaine was not confirmed in ethanol-naïve animals. Injections of 0.25 or 0.5 mM 

cocaine into the pVTA produced robust increases in AcbSh DA levels (200 and 

320% baseline, respectively), while injections of 1.0 or 2.0 mM cocaine produced 

robust decreases in DA levels (70-75% baseline). The observed increase in 

maximal response to 0.5 mM cocaine suggests a sensitization to the DA-

neuronal-stimulating effects because higher cocaine concentrations produced a 

decreased maximal response. Unfortunately, corroborating data from an ICSA 

study examining the effects of chronic continuous ethanol drinking on the self-

administration of cocaine into the pVTA is not available, as the experiments are 

ongoing. However, preliminary results suggest a similar finding as the current 

microinjection-microdialysis study (unpublished observations).  

Moreover, the results are in agreement with a number of previous findings. 

First, chronic continuous ethanol drinking produced functional alterations in P 

rats, resulting in an increased sensitivity to the reinforcing effects of intra-AcbSh 
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cocaine (current study). Second, ethanol-experienced (3 g/kg/d intake), but not 

ethanol-naïve, Wistar rats displayed increased levels of DA in AcbSh after pVTA 

injections of 100 mg% ethanol (Rodd et al., 2006a). Lastly, P rats receiving the 

same protocol of chronic ethanol drinking as the current experiment displayed an 

increased sensitivity to the reinforcing effects of ethanol within the pVTA (Rodd et 

al., 2005b), as evidenced by an upward and leftward shift in the dose-response 

curve (Zernig et al., 2004).  The enhanced sensitivity of the pVTA to the 

stimulating and inhibitory effects of cocaine in CE rats compared to N rats was 

not likely a result of the presence of appreciable ethanol levels within the brain or 

plasma, as access to the 15% ethanol solution was removed 4 h before the 

beginning of the microdialysis experiment.  

Similar to experiments examining DA functioning in the Acb, P rats with 

long-term, voluntary ethanol-drinking experience exhibited an increased number 

of spontaneously active VTA DA neurons (Morzorati et al., 2010), Moreover, 

chronic ethanol drinking produced decreased pVTA DA levels along with 

increased DA clearance (Engleman et al., 2011). Divergent findings from other 

research underscore the importance of factors such as genetic background and 

voluntary drinking. Repeated ethanol injections (which often produce 

dependency) in outbred animals produced a hypodopaminergic state, including 

fewer spontaneous active VTA DA neurons (Shen et al., 2007), decreased firing 

rates (Diana et al., 1992, 1995, 1996), and decreased Acb DA levels (Diana et 

al., 2003; Rossetti et al., 1992; Weiss et al., 1996).  

At low to moderate doses, cocaine injections into the pVTA produced 

increased levels of DA neuronal activity in ethanol-drinking animals compared to 

ethanol-naïve animals. Increased cocaine-evoked neuronal activity potentially 

resulted from an increased excitatory tone, decreased inhibitory tone, or 

alterations in serotonergic function. Chronic ethanol drinking or a single ethanol 

injection (Saal et al., 2003; Stuber et al., 2008) induced LTP of AMPA functioning 

in the VTA by enhancement of glutamatergic afferent input through the 

stimulation of the D1 receptor (Deng et al., 2009; Xiao et al., 2009). AMPA LTP 
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enhanced tonic DA levels within terminal regions (Grace et al., 2007), and 

strengthened activity-dependent synaptic plasticity (Wolf et al., 2004). In a 

complementary manner, repeated ethanol injections induced NMDA LTP (Bernier 

et al., 2011), increasing the probability of DA neuronal burst firing.  

Ethanol induction of NMDA and AMPA LTP is consistent with the 

increased expression of the NMDAR1 and GluR1 ionotropic glutamate receptor 

subunits within the VTA after chronic ethanol drinking (Ortiz et al., 1995). 

Moreover, pVTA DA neurons were more sensitive to in vivo NMDA-elicited burst 

firing in P rats with 8 wk of continuous ethanol drinking than in ethanol-naïve 

controls (Fitzgerald and Morzorati, 2010). Acute ethanol treatment impaired LTP 

induction at GABA synapses onto VTA DA neurons (Guan and Ye, 2010; but see 

Melis et al., 2002), and GABA inhibition can potently suppress NMDA-induced 

burst firing (Lobb et al., 2010). Overall, ethanol drinking potentially produced an 

enhancement of NMDA LTP and an impairment of GABA LTP promoting robust 

neuronal excitability of VTA DA neurons during cocaine treatment. Chronic 

ethanol drinking could also increase the stimulating effects of lower 

concentrations of cocaine via an up-regulation of cocaine-evoked serotonin 

uptake inhibition. Ethanol-induced adaptations in VTA SERT function are tenable 

because repeated ethanol treatment increased transporter expression in the Acb, 

cortex, and hippocampus (Shibasaki et al., 2010).  

At high doses, cocaine injections into the pVTA produced decreased 

levels of DA neuronal activity in ethanol-drinking animals compared to both 

baseline levels and ethanol-naïve animals. Decreased cocaine-evoked neuronal 

activity potentially resulted from an up-regulation of: cocaine-evoked DAT 

inhibition, D2 autoreceptor function, or GABAergic inhibition. For example, 

ethanol-induced alterations in DAT functioning within the VTA could increase the 

effectiveness of cocaine to inhibit the somatodendritic uptake of DA in a manner 

similar to the observed effect in the Acb (Yoshimoto et al., 2000). Supporting this 

concept, voluntary ethanol drinking by Wistar rats resulted in increased DAT 

binding within the VTA (Jiao et al., 2006). Repeated ethanol injections produced 
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a supersensitivity of D2 autoreceptors on VTA DA neurons to inhibit neuronal 

firing (Perra et al., 2011). This was observed as an enhancement in both the 

magnitude and duration of neuronal inhibition, which resulted from a down-

regulation of the calcium-dependent ‘desensitization-cascade’ of inositol 1,4,5-

triphosphate and calcium/calmodulin-dependent protein kinase II. While acute 

ethanol activates the cAMP-protein kinase A (PKA) cascade via actions at D1 

receptors and/or AC, chronic ethanol exposure produces a down-regulation of 

cAMP-PKA activity and alters CREB functioning in a number of mesolimbic brain 

regions (Pandey, 2004; Ron and Jurd, 2005).  

Genetic factors may affect ethanol-induced adaptations in D2 receptor 

functioning within the VTA, as P rats displayed 25% less D2 receptor binding in 

this region compared to NP rats (McBride et al., 1993). Increased inhibitory tone 

could also contribute to the observed decrease in cocaine-evoked neuronal 

activity, as chronic ethanol treatment increased VTA GABA neuronal firing and 

GABA release onto VTA DA neurons (Gallegos et al., 1999; Melis et al., 2002). 

Decreased GABAA-inhibition potentially contributed to increased VTA GABA 

neuronal activity, as chronic ethanol drinking produced decreased expression of 

the VTA GABAA alpha-1 receptor subunit (Charlton et al., 1997; Ortiz et al., 1995; 

Papadeas et al., 2001) located only on GABA, and not DA, VTA neurons (Tan et 

al., 2010). 

Ethanol-induced alterations in the neuronal stimulating profile of cocaine 

within the pVTA may also result in part from changes in local neuropeptide 

functioning. When released within the VTA, CRF and ORX peptides impart 

modulatory effects on drug-related behaviors through plasticity at NMDA 

receptors (Bonci and Borgland, 2009; Shalev et al., 2010; Wise and Morales, 

2010). Both CRF and ORX act within the VTA to increase DA neuronal firing and 

potentiate NMDA-excitation of DA neurons (Borgland et al., 2010). These actions 

ultimately increase DA release in terminal regions, such as the Acb. Intra-VTA 

injections of either ORX or CRF produce increases in local DA and glutamate 

levels and concomitantly trigger cocaine seeking (Wang et al., 2005, 2009). An 
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ethanol-induced up-regulation in type 1 and/or type 2 CRF receptor (CRF1, 

CRF2) functioning within the VTA could facilitate CRF potentiation of LTP, as 

chronic ethanol exposure produced increased expression of both receptor types 

and the CRF peptide in limbic brain regions (Heilig and Koob, 2007). Cocaine-

induced alterations in ORX transmission within VTA were associated with local 

synaptic plasticity, behavioral sensitization, and reinforcement (Aston-Jones et 

al., 2009, 2010; Borgland et al., 2006; Espana et al., 2010, 2011). Thus, ethanol-

induced increases in ORX afferent input to VTA DA neurons could reduce the 

threshold for cocaine activation of VTA DA neurons and/or promote cocaine-

induced plasticity. Injections of an ORX antagonist into the VTA attenuated cue- 

and stress-induced reinstatement of ethanol seeking (Richards et al. 2008). 

Chronic ethanol drinking by alcohol preferring rats increased the area of 

hypothalamic ORX mRNA expression (Lawrence et al., 2006).  

 Effects of Ethanol Experience Followed by Forced Abstinence 

 

Somewhat unexpectedly, P rats displayed an additional augmentation in 

the sensitivity of pVTA DA neurons to the stimulating actions of cocaine after 30 

d of abstinence from chronic ethanol drinking, relative to their ethanol-naïve and 

continuous-ethanol-access counterparts. Compared to the continuous drinking 

condition, an additional period of protracted abstinence produced: an increased 

maximal response of DA release at a low dose of cocaine; no significant change 

(instead of a robust increase) in DA levels at moderate dose; and similar pattern 

of dopaminergic inhibition at the highest dose of cocaine (Figures 16, 17, 19). 

Generally, the data represent a leftward shift in the dose-response curve (Figure 

20). Injections of 0.25 mM cocaine into the pVTA produced a robust increase in 

AcbSh DA levels (235% baseline), while injections of 0.5 or 2.0 mM cocaine 

produced no change or robust decreases in DA levels, respectively (60-80% 

baseline). The observation of a more robust increase in AcbSh DA after pVTA 

injections at the lowest concentration of cocaine examined (0.25 mM) in CE 
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versus N animals supports the interpretation of an increased sensitivity to 

cocaine’s DA-neuronal-stimulating effects after chronic ethanol drinking.  

Unfortunately, a reduction of threshold dose of cocaine needed to produce 

increased AcbSh DA levels was not confirmed, as 0.25 mM was the lowest 

concentration of cocaine examined. Additional experiments are warranted to 

examine the effects of protracted abstinence on the activation pVTA DA neurons 

by very low concentrations (0.05-0.10 mM) of locally applied cocaine. The 

concentration of 1.0 mM cocaine was not tested in the abstinent group of rats. 

However, given the pattern of dopaminergic inhibition at 1.0 mM in CE animals 

and at 2.0 mM in CE and Ab animals, a similar inhibitory response is likely. To 

this effect, concentrations of 1.0 and 2.0 mM cocaine potentially produced a 

maximal physiological level of pVTA DA neuronal inhibition (i.e. floor-effect). 

As with the previous experiment, accompanying data from an ICSA study 

examining the effects of protracted abstinence from chronic ethanol drinking on 

the self-administration of cocaine into the pVTA is not currently available. P rats 

trained for 6 wk to respond for 15% ethanol or water displayed increased lever 

responding for ethanol in either a FR or PR schedule after a 2- or 5-wk period of 

abstinence, suggesting an enhancement of reinforcer value during protracted 

abstinence (Rodd et al., 2003a). Furthermore, P rats receiving repeated cycles of 

ethanol (15% v/v) access and deprivation followed by a 7-wk period of 

abstinence displayed an increased sensitivity to the reinforcing effects of ethanol 

within the pVTA compared to both ethanol-naïve and continuous-ethanol-drinking 

animals (Rodd et al., 2005c). Along with the current experiments, this suggests P 

rats given 12 wk of access to 15% v/v ethanol followed by a 30-d period of 

abstinence would display an increased sensitivity to the reinforcing effects of 

cocaine within the AcbSh compared to both ethanol-naïve and continuous-

ethanol-drinking animals. Moreover, ethanol-abstinent P rats should also display 

higher levels of responding, compared to both ethanol-naïve and continuous-

ethanol-drinking animals, for the infusion of optimal concentrations of cocaine 

into the AcbSh during the reinstatement session. Future studies examining the 
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effects of abstinence duration and ethanol re-exposure cycles on the reinforcing 

and DA-neuronal-stimulating effects of cocaine within the AcbSh and pVTA could 

significantly contribute to understanding the how the observed neurochemical 

effects of cocaine in the mesolimbic DA system are associated with the 

acquisition of reinforced behavior. 

The enhancement of sensitivity of the pVTA to the DA neuronal effects of 

cocaine observed after abstinence from ethanol drinking likely reflects a further 

progression of neuroadaptive processes occurring during and after withdrawal 

from ethanol (Koob and Volkow, 2010). These progressive adaptations are 

manifest as an enhanced dysregulation of basal neurotransmission, receptors, 

neuromodulator function, and intracellular processes. Increased basal DA levels 

in the Acb of P rats persisted for at least a 2-wk period after termination of 

ethanol drinking (Thielen et al., 2004). Ethanol-induced changes in D1 binding in 

the Acb was observed as far as seven months after the conclusion of ethanol 

treatment (May, 1992), while alterations in VTA DA neuronal firing persisted 

through at least a 6-wk period of abstinence (Shen et al., 2007).   

Potential mechanisms for the effects observed in the current experiment 

involve the enhancement of CRF and ORX functioning during protracted 

abstinence. A significant role for CRF’s actions within the VTA to mediate drug 

seeking and relapse at time points far into protracted abstinence has been well 

characterized (see Sarnyai et al., 2001; Shalev et al., 2010). Wistar rats with 2 

wk of voluntary ethanol drinking followed by 20 d of abstinence showed a 

relatively selective increase in hypothalamic expression of CRF1, CRF2, and ORX 

receptor type 1 genes (Pickering et al., 2007). Chronic ethanol drinking produced 

a transient decrease in CRF levels within the amygdala of Wistar rats, with levels 

returning to normal after 3 wk (Zorrilla et al., 2001). Interestingly, CRF levels 

were significantly higher in ethanol-exposed animals after a 6-wk period of 

protracted abstinence, compared to ethanol-naïve controls. Thus, gradual 

increases in VTA CRF functioning occurring after acute ethanol withdrawal and 

during protracted abstinence could provide the enhanced ability of cocaine to 
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activate VTA DA neurons. Abstinence could also produce the observed effects 

via an enhancement in ORX excitatory tone to DA neurons in the pVTA. Inbred P 

rats displayed an increased Fos expression in a number of brain regions during 

the immediate cue-induced reinstatement from oral ethanol reinforcement, while 

pretreatment with a ORX antagonist eliminated reinstatement responding and 

blunted Fos expression (Jupp et al., 2011). Moreover, delaying reinstatement for 

five months potentiated the Fos response compared to immediate reinstatement, 

and ORX antagonism retained the ability to eliminated reinstatement and 

attenuate Fos expression.  

Overall, the results confirm the pVTA as an important brain region 

mediating the neurochemical effects of cocaine-evoked increases DA levels in 

mesocorticolimbic terminal regions, such as the AcbSh. The results also support 

the hypothesis that a prolonged period of ethanol drinking increases the 

sensitivity of the pVTA to the DA-neuronal-stimulating effects of cocaine. The 

inhibition of pVTA neurons in ethanol-naïve animals after injections of 

concentrations greater than 2.0 mM cocaine would suggest ethanol-drinking 

experience produced a global shift in the local actions of cocaine within the pVTA 

(i.e. increased sensitivity to the stimulating and inhibitory effects of pVTA 

cocaine). Furthermore, a period of protracted abstinence enhanced the effects of 

ethanol drinking, in contrast to the hypothesis that the effects of continuous 

ethanol drinking on the DA-neuronal-stimulating actions of intra-pVTA cocaine 

would endure for 30 d. For abstinent animals, the confirming pVTA injections of 

cocaine concentrations less than 0.25 mM elicit significant increases in AcbSh 

DA not seen in continuous ethanol drinking rats (i.e. observation of a leftward 

shift of the dose-response curve) will increase support for the current findings. In 

summary, the results point to the occurrence of ongoing changes in neuronal 

functioning beyond acute withdrawal from chronic ethanol drinking and into 

periods of protracted abstinence. 
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 Integrated Discussion 

 

Adult P rats will voluntarily consume significant amounts of ethanol if given 

continuous free-choice access, and this ethanol-drinking experience increased 

the sensitivity to the local reinforcing and stimulatory effects of cocaine within the 

mesoaccumbens DA circuit. The consequences of continuous ethanol-drinking 

experience were manifest as alterations to the behavioral and neurochemical 

profile of the central actions of cocaine within brain regions containing 

mesocorticolimbic DA cell bodies (pVTA) or terminals (AcbSh).  

Confirmation of similar ethanol-induced alterations in the complementary 

behavioral or neurochemical dose-response to cocaine within the same brain loci 

will increase support for the current findings. In the AcbSh, data was obtained for 

the behavioral response to local self-infusion to cocaine, but an assessment of 

the associated neurochemical changes is warranted. This is accomplished by the 

concurrent local application of cocaine via perfusion into the AcbSh (i.e. reverse-

microdialysis) and collection of brain dialysates for DA measurement through a 

single in vivo microdialysis probe (for description, see Andrews and Lucki, 2001; 

Engleman et al., 2003). Additional experiments using quantitative methods can 

obtain information correlated with DA uptake (for description, see Chefer and 

Shippenberg, 2002; Yim and Gonzales, 2000). In the pVTA, data was obtained 

for the ‘down-stream’ neurochemical response to experimenter-administered 

cocaine, but an assessment of the associated behavioral changes is not 

complete. Dose-response experiments examining self-infusion of cocaine into the 

pVTA are crucial for a comprehensive interpretation of the effects of chronic 

continuous ethanol drinking and subsequent ethanol abstinence on the 

reinforcing and DA-neuronal-stimulating effects within the pVTA.  

In agreement with other ICSA, intracranial place conditioning, and 

microinjection-microdialysis studies examining the neurocircuitry of drugs of 

abuse, the effects of cocaine were localized within the pVTA, as opposed to the 

aVTA or adjacent midbrain regions. Also of interest is the site-specific nature and 
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administration contingency of ethanol-induced alterations in the central 

reinforcing and DA-neuronal-stimulating effects of cocaine. For example, 

repeated daily ethanol or nicotine pretreatment injections directly into the pVTA 

were sufficient to induce a neurochemical sensitization to the DA-neuronal-

stimulating effects of ethanol (Ding et al., 2009a, 2011). In this case, the drug 

pre-exposure was both site-specific and non-contingent. Experiments examining 

the relative magnitude and time course of such effects will be useful to 

characterize the specific influence of these variables. For example, does local 

pretreatment of the pVTA with repeated microinjections of ethanol enhance the 

subsequent ICSA of cocaine into the pVTA, and do these effects persist to the 

same degree as an effect induced by voluntary ethanol drinking? Lastly, 

experiments examining the effects of the pattern and time course of drinking 

behavior and abstinence periods will also provide additional insight into the 

development of ethanol-induced neuronal adaptations associated with the 

enhancement of the reinforcing effects of cocaine within the MVM DA circuit. For 

example, limited access schedules of alcohol availability, repeated cycles of 

ethanol access and abstinence, and periods of protracted abstinence beyond 30 

d would mimic the human behaviors associated with binge drinking and relapse. 

 Conclusions 

 

In summary, chronic continuous voluntary ethanol drinking by female P 

rats enhanced both the reinforcing effects of cocaine within the AcbSh and the 

stimulatory and inhibitory effects of cocaine on pVTA DA neurons. Alterations in 

the stimulatory and inhibitory effects of cocaine on pVTA DA neurons were not 

only enduring, but also enhanced, following a period of protracted abstinence 

from ethanol exposure. Thus, voluntary ethanol-drinking experience, by animals 

with a genetic predisposition for high ethanol intake, altered the site-specific 

actions of cocaine within the mesolimbic regions of the CNS. In human 

populations, moderate to high levels of alcohol drinking potentially produces 
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neuroplastic alterations within the brain mediating an increased susceptibility to 

the positive reinforcing effects of cocaine often observed during early drug 

experiences. Functional alterations in MVM DA circuits during the acquisition of 

cocaine self-administration suggest a potential increased vulnerability may be 

associated with the earlier stages of compulsive drug taking behaviors. 

Therefore, prevention of chronic and excessive alcohol intake in populations with 

a genetic predisposition for substance abuse could reduce the proclivity to 

develop maladaptive patterns of cocaine use. It is unknown, however, if the 

observed effects are specific to animals with a genetic preference for ethanol. 

Also uncertain is whether other putative ‘gateway’ drugs, such as nicotine and 

marijuana, share ethanol’s mechanisms of action or produce neuronal alterations 

though distinct substrates. For example, repeated nicotine exposure enhanced 

cocaine-evoked synaptic plasticity, behavioral sensitization, and reinforcement 

via increased histone acetylation (Levine et al., 2011), a post-translational 

adaptation also observed after chronic ethanol exposure (McBride et al., 2009; 

Pascual et al., 2009). Thus, treatments targeting common putative substrates 

and addressing both direct drug effects and the sequential progression of 

polydrug use may be more effective at preventing drug and alcohol misuse than 

individual treatments. 
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